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Abstract

In this paper, a new approach is developed based on an endochronic density-dependent plasticity model for

describing the isothermal deformation behavior of metal powder at low homologous temperature. As large deforma-

tions are observed in powder compaction processes, the endochronic constitutive model is presented based on large

strain plasticity and an integration scheme is established for the rate constitutive equations. Endochronic constitutive

equations are established based on coupling between deviatoric and hydrostatic behavior. The elastic response is stated

in term of hypoelastic model and endochronic constitutive equations are stated in unrotated frame of reference. Finally,

the algorithmic modulus consistent with numerical integration algorithm of constitutive equations is extracted. Al-

though the concept of yield surface has not been explicitly assumed in endochronic theory, it is demonstrated that the

cone-cap yield surface can be derived as a special case of the proposed endochronic model. The material parameters in

endochronic model are calibrated for two samples of metal powder by fitting the model to reproduce data from true-

triaxial compression experiments. The numerical schemes are examined for efficiency and accuracy in the modeling of

three powder compaction components.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The knowledge of the behavior of powder material undergoing cold compaction is necessary for pre-

dicting the final shape and the density distribution within the parts, and for preventing the failures that can

occur during the subsequent sintering. Such components vary from simple bush families, which are

appropriate for bearing applications, through to complex multi-level parts, which are used in automatic

transmission systems. The powder compaction process transforms the loose powder into a compacted
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sample with a density increase. Design of a compaction process consists, essentially, in determining the

sequence and relative displacements of die and punches in order to achieve this goal. The design process,

which has to be done for any new type of piece to be manufactured, could be effectively improved by using a

simulation tool, able to predict the mechanical response of the compact along the process.
One of the main ingredients of successful quantitative solution possibilities is an appropriate constitutive

modeling of powder, which can reproduce powder material behavior under complicated loading conditions

and an accurate and stable integration algorithm for constitutive relation. Several constitutive models for

the cold compaction of metal powders have been proposed, including: microscopic models (Fleck et al.,

1992, 1995; Ransing et al., 2000; McMeeking et al., 2001), flow formulations (Lewis et al., 1993) and solid

mechanics models (Brown and Weber, 1988; Chenot et al., 1990; Brekelmans et al., 1991; Haggblad and

Oldenburg, 1994; Lewis and Khoei, 1998). The cap plasticity model used in the modeling of geological and

frictional materials, is employed to capture the major features of the response of initially loose metal
powders to complex deformation histories which are encountered in the manufacture of engineering

components by powder metallurgy techniques. The cone-cap model based on a density-dependent

Drucker–Prager yield surface and a non-centered ellipse is developed by Aydin et al. (1996), Khoei and

Lewis (1998, 1999), Brandt and Nilsson (1999) and Gu et al. (2001). A double-surface plasticity model is

developed by Lewis and Khoei (2001) for the non-linear behavior of powder materials in the concept of the

generalized plasticity formulation for the description of cyclic loading. This model is based on the com-

bination of a convex yield surface consisting of a failure envelope, such as a Mohr–Coulomb yield surface

and a hardening elliptical yield cap. The model comprises two surfaces, one to reflect shear failure and the
other to capture densification.

In the analysis of powder forming problems, the non-linear behavior of powder is adequately described

by the cap plasticity model. However, it suffers from a serious deficiency when the stress-point reaches a

yield surface. In the flow theory of plasticity, the transition from an elastic state to an elasto-plastic state

appears more or less abruptly. For powder material it is very difficult to define the location of yield surface,

because there is no distinct transition from elastic to elastic–plastic behavior (Perez-Foguet et al., 2001).

Results of experimental test on some hard metal powder show that the plastic effects begin immediately

upon loading. Thus, an advanced constitutive theory is necessary to demonstrate this phenomenon. In the
present study, an endochronic density-dependent plasticity model is developed to describe the isothermal

deformation behavior of metal powder at low homologous temperature.

The endochronic theory deals with the plastic response of materials by means of memory integrals,

expressed in terms of memory kernels. Formulation of this theory is based on thermodynamical concepts

and provides a unified point of view to describe the elastic–plastic behavior of material, since it places no

requirement for a yield surface and ‘loading function’ to distinguish between loading and unloading. A key

ingredient of the theory is that the deformation history is defined with respect to a deformation memory

scale called intrinsic time. In the original version of the endochronic theory, proposed by Valanis (1971), the
intrinsic time was defined as the path length in the total strain space. The so-called endochronic theory

violates the second law of thermodynamics and leads to constitutive relations, which characterize inherently

unstable materials (Sandler, 1978; Rivlin, 1981). Aiming at the correction of this deficiency, a new version

of the endochronic theory was developed by Valanis (1980) in which the intrinsic time was defined as the

path length in the plastic strain space. The new endochronic plasticity was capable of predicting a stress-

response to deformation processes, including reversal points in loading in agreement with the experimen-

tally observed mechanical behavior of metals. Also, Valanis demonstrated that an introduction of Dirac

delta function into the kernel function leads to a derived result of a yield surface and classical plasticity
models of isotropic and kinematic hardening could be derived as a special case of the endochronic theory.

The first implementation of an endochronic theory into a multi-dimensional finite element code was

made by Lin et al. (1981), who focused on the original endochronic theory with one term exponential for

the kernel function. An implicit finite element algorithm for the modern version of endochronic theory
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without a yield surface was developed by Valanis and Fan (1984), which was incrementally non-linear.

Also, Watanbe and Atluri (1985) presented an implicit finite element algorithm for the modern endochronic

theory. They used the endochronic plasticity with yield surface and the resulting constitutive equations were

incrementally linear. An unconditional stable integration scheme of endochronic constitutive equations was
proposed by Hsu et al. (1991, 1992) and its ability is examined in the modeling of random non-proportional

tests on OFHC copper. Hsu and Griffin (1996) implemented radial return algorithm in integration of

endochronic constitutive equations and applied their formulation to finite element micromechanics

modeling of a unidirectional metal matrix composite subjected to non-proportional cyclic loading.

The endochronic theory was extended to finite deformation with the concept of the corotational rate and

plastic spin by Im and Atluri (1987). They derived the governing equations by using the isoclinic config-

uration as the intermediate configuration and the corresponding second Piola–Kirchhoff stress tensor.

Cases of finite uniaxial compression and torsion were discussed in their work. Wu et al. (1995) incorporated
the concepts of corotational rate, corotational integral and plastic spin to endochronic theory and applied it

to description of rigid-plastic deformation in thin-walled tubes subjected to finite torsion. Pan et al. (1996)

extended the ordinary differential constitutive equations of endochronic theory to simulate elasto-plastic

deformation in the range of finite strain using the concept of corotational rate. Different objective rates

were incorporated into the theory and cases involving metal tubes under torsion and metal rectangular

block under biaxial compression were discussed. An endochronic plasticity theory was developed by Khoei

et al. (2003a) to describe the large deformation in finite strain using the concepts of corotational stress rate

and the additive decomposition of deformation rate. They derived the constitutive equations for thin-
walled tube under torsion to simulate the axial effects for various materials subjected to simple and pure

torsional loading. An elasto-plastic and elasto-viscoplastic endochronic theory was extended to large strain

range on the basis of the additive decomposition of the strain rate tensor and hypoelasticity by Khoei et al.

(2003b). Recently, Khoei et al. (2003c) developed a density-dependent endochronic theory in finite strain

plasticity to simulate the compaction process of powder material.

In this paper, the endochronic plasticity theory developed by Khoei et al. (2003c) for powder compaction

simulation is extended based on coupling between plastic deviatoric and plastic hydrostatic deformation.

The new endochronic model is proposed for a better understanding of the isothermal deformation behavior
of metal powder at low homologous temperature. It is demonstrated how the cone-cap plasticity can be

generated from the proposed endochronic model by using a special form for the kernel functions. As large

deformation is observed in powder compaction process, a hypoelastic–plastic formulation is developed in

the context of finite deformation plasticity. Constitutive equations are stated in unrotated frame of refer-

ence that greatly simplifies endochronic constitutive relation in finite plasticity. While the explicit treatment

of both the integration of constitutive equations and the solution of the equilibrium equation is a common

approach in the highly non-linear behavior of powder compaction simulation, an implicit scheme is em-

ployed to present the efficiently and accurately the method for this type of non-linear problems. An inte-
gration scheme, which is accurate, stable and amenable to consistent linearization is developed. Although

the major challenge in the integration of rate constitutive equations in large deformation analysis is to

achieve incremental objectivity, it has been trivially achieved. Algorithmic modulus consistent with

numerical integration of constitutive equations for the density-dependent endochronic theory is extracted.

The implementation of consistent modulus in global tangent stiffness matrix is essential in preserving the

quadratic rate of convergence of Newton procedure in solving the equilibrium equations. The material

parameters in the constitutive model are calibrated for two samples of metal powder by fitting the model to

reproduce data from true-triaxial compression experiments. In order to demonstrate the efficiency and
accuracy of the proposed constitutive model and computational algorithms, three powder forming pro-

cesses are simulated.

The plan of the paper is as follows: in Section 2, the density-dependent endochronic plasticity model is

developed to represent the response of metal powder. In Section 3, the implementation of endochronic
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plasticity model in large deformation is introduced. In Section 4, the numerical integration of constitutive

equations are extracted. Section 5 is devoted to the assessment of the model and computational procedure.

In Section 6, some concluding remarks are presented. Finally, the consistent tangent modulus, which has an

important role in the convergence rate of global non-linear system of equations is presented in Appendix A.
2. Endochronic constitutive model

Constitutive equations of the endochronic theory for rate-independent, plastically compressible, initially

isotropic material due to plastic volumetric and plastic deviatoric deformation can be expressed as
rdev ¼ 2

Z zd

0

Udðzd � z0Þ de
p
dev

dz0
dz0 ð1Þ

rh ¼ 2

Z zh

0

Uhðzh � z0Þ de
p
vol

dz0
dz0 � 2

Z zh

0

Wðzh � z0Þrdev :
depdev
dz0

dz0 ð2Þ
where UdðzdÞ, UhðzhÞ andWðzhÞ are material functions called deviatoric, hydrostatic and coupling hereditary

functions. A time scale 1 is introduced which is independent of elapsed time, but intrinsically dependent on

the deformation of material. It is through this parameter that history effects are introduced into constitutive

equations of endochronic theory.
d12 ¼ depdev : de
p
dev þ j2dep

2

vol ð3Þ

dzd ¼
d1

fdðg; p; hÞ
ð4Þ

dzh ¼
d1

jfhðg; pÞ
ð5Þ
where fdðg; p; hÞ and fhðg; pÞ are material functions called deviatoric and hydrostatic scale functions. These

functions depend on hydrostatic pressure p, with its positive value in tension, Lode’s angle h and relative

density g, defined as
h ¼ 1

3
arccos

3
ffiffiffi
3

p
J3

2J 3=2
2

 !
ð6Þ

g ¼ qt

qs

ð7Þ
where J2 and J3 are second and third invariants of deviatoric stress tensor, qt is the apparent density in time

t and qs denotes the solid density of material. The relative density g evolves in time by the following relation
g ¼ g0
J

ð8Þ
where g0 is the initial relative density and J is the third invariant of deformation gradient tensor. In Eq. (3),

j is the coupling parameter between the deviatoric and hydrostatic deformations. In above equations, the

total stress tensor is denoted by r and its deviatoric and hydrostatic parts by rdev and rh. The symbol e
represents the total strain tensor by deviatoric and volumetric parts, edev and evol, respectively. The

superscripts ‘e’ and ‘p’ indicate the elastic and plastic components, respectively.
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The kernel functions UdðzdÞ, UhðzhÞ and WðzhÞ can be expressed in terms of a Dirichlet series as (Valanis

and Peters, 1991)
UdðzdÞ ¼
X1
i¼1

Aie
�aizd ð9Þ

UhðzhÞ ¼
X1
i¼1

Bie
�bizh ð10Þ

WðzhÞ ¼
X1
i¼1

Ci

jfh
e�bizh ð11Þ
with the requirements that Ai, Bi, ai, bi and Ci are non-negative for all values of i, and the conditions,
X1
i¼1

Ai

ai
< 1 ð12Þ

X1
i¼1

Bi

bi
< 1 ð13Þ

X1
i¼1

Ci

bi
< 1 ð14Þ
These conditions ensure the integrability of UdðzdÞ, UhðzhÞ and WðzhÞ over a finite domain of time scale z.
In numerical application m-term Dirichlet series can be used as (Hsu et al., 1991)
UdðzdÞ ¼
Xm
i¼1

Aie
�aizd ð15Þ

UhðzhÞ ¼
Xm
i¼1

Bie
�bizh ð16Þ

WðzhÞ ¼
1

jfh

Xm
i¼1

Cie
�bizh ð17Þ
In above relations, coupling between deviatoric and hydrostatic behavior is introduced in endochronic

theory through intrinsic time 1 leading to dilatant deformation, which is defined by Eq. (3) and the rate

equation (2) through hereditary function WðzhÞ. The role of scale functions fdðg; p; hÞ and fhðg; pÞ is crucial
in the behavior of model. By scaling intrinsic time, these functions cause hardening or softening plastic

behavior as a function of hydrostatic pressure, relative density of material and Lode’s angle.

2.1. Yield function

The concept of yield surface has not been assumed in the endochronic theory of plasticity but it can be

derived implicitly by assuming special forms for the kernel functions of Eqs. (15)–(17). Although the de-

rived yield surface is not used in the integration of the constitutive equations, it is employed in this section
to describe the properties of the proposed endochronic plasticity and the effects of fdðg; p; hÞ and fhðg; pÞ on
its behavior.
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Consider that the kernel functions UdðzdÞ, UhðzhÞ and WðzhÞ are expressed by one term of delta function,

they can be written as
UdðzdÞ ¼ /da1e
�a1zd ¼ /ddðzdÞ; a1 ! 1 ð18Þ

UhðzhÞ ¼ /hb1e
�b1zh ¼ /hdðzhÞ; b1 ! 1 ð19Þ

WðzhÞ ¼
1

jfh
whb1e

�b1zh ¼ 1

jfh
whdðzhÞ; b1 ! 1 ð20Þ
where dðxÞ is Dirac delta function and /d, /h and wh are positive parameters. Substituting the above

relations in Eqs. (1) and (2) and using relations (3)–(5), with some straightforward manipulations leads to

the following relation
q2 þ 3

2

/d

/h

fd
fh

� �2

p
�

þ 2

3

wh

/dfd
q2
�2

¼ 3

2
/2

df
2
d ð21Þ
where p is the hydrostatic pressure, with positive value in tension, and q is defined as q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
rdev : rdev

q
.

Although the yield surface has not been explicitly assumed in endochronic theory, introducing delta

function to kernels, results implicitly in this concept. In order to present different aspects of Eq. (21), the

following specific forms are proposed for the dependence of deviatoric scale function fdðg; p; hÞ and

hydrostatic scale function fhðg; pÞ on g, p and h
fdðg; p; hÞ ¼ hðhÞ cðgÞ
�

� p
p0

�
ð22Þ

fhðg; pÞ ¼ ð1� wÞgðgÞ � w
p
/h

ð23Þ
where p0 is a positive parameter and w is a positive number in the range of 0–1. In Eq. (22), cðgÞ is an

increasing function of relative density, defined as
cðgÞ ¼ Ac þ Bcg
mc
g� gm
1� gm

ð24Þ
in which the dependence of cðgÞ on g is a power-law form. In above equation, Ac, Bc, gm and mc are material

parameters with positive values. In Eq. (22), hðhÞ is defined based on Willam–Warnke function as
hðhÞ ¼ 2ðe2 � 1Þ cos hþ ð2e� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5e2 � 4eþ 4ð1� e2Þ cos2 h

p
ð2e� 1Þ2 þ 4ð1� e2Þ cos2 h

 !1
2

ð25Þ
where e is a parameter of the model. In Eq. (23), gðgÞ is an increasing function of relative density with the

following specific form
gðgÞ ¼ Agg
mg
g� gm
1� gm

ð26Þ
where Ag and gm are positive material parameters. Typical evolution of fdðg; p; hÞ and fhðg; pÞ with g and p
are plotted in Fig. 1. Introducing Eqs. (22) and (23) into (21) results in a yield function, whose cross

sectional shape on meridian plan is plotted in Fig. 2. This yield surface is very similar to the cone-cap yield

surface, i.e. a combination of Mohr–Coulomb or Drucker–Prager and elliptical yield surfaces, which has
been extensively used by authors to describe the behavior of powder and granular materials (Aydin et al.,

1996; Brandt and Nilsson, 1999; Gu et al., 2001; Lewis and Khoei, 2001).



Fig. 1. Typical evolution of fd and fh with relative density and hydrostatic pressure.

Fig. 2. Trace of a typical yield function on meridian plane.
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2.2. Dilatancy condition

The parameters j and wh in Eqs. (3) and (20) control the coupling between deviatoric and hydrostatic

responses in behavior of the model. In this section, the effects of these parameters are discussed and a
procedure for their estimation from experimental data are described. Substituting Eqs. (19) and (20) in Eq.

(2) yields
rh ¼ /hjfh
depvol
d1

� whrdev :
depdev
d1

ð27Þ
Eliminating d1 between Eqs. (3) and (27) and considering rdev : de
p
dev as krdevkkdepdevk cos s, we obtain the

following relation (Valanis and Peters, 1991)
j
depvol

kdepdevk
¼

1� wh
krdevk cos s

rh

� �2
fhwh jrdevk cos s

r2
h

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fh
rh

� �2
þ whkrdevk cos s

rh

� �2
� 1

r ð28Þ
In particular case of triaxial compression test, when the loading condition occurs, cos s ¼ 1 and the

dilatancy condition will be reduced to the following condition
wh > � rh

krdevk
ð29Þ
The two material parameters wh and j can be determined from the results of triaxial compression test. The

constant wh is the ratio of �rh=krdevk at the initiation of dilatation, where the effect of depvol is vanished.
After indicating wh, the coupling parameter j can be computed by substituting the measured dilatancy rate

depvol=de
p
dev into Eq. (28).

2.3. Plastic flow rule

In order to investigate the direction of plastic strain increment in stress space, substitute Eqs. (4), (5),

(18), (19) and (20) into Eqs. (1) and (2). It leads to the following relation for increment of plastic strains
depdev ¼
d1
fd/d

rdev ð30Þ

depvol ¼
d1

jfh/h

rh

�
þ jwh

fh
/dfd

krdevk2
�

ð31Þ
The above relations are the flow rule, which is implicitly derived from the proposed endochronic model.
The variable d1 can be interpreted as the counterpart of consistency parameter of classical plasticity

models. The above relations can be written in ðp; qÞ stress space using the components of flow vector on the

meridian plan m ¼ ðmp;mqÞ as
mp ¼
d1

jfh/h

p
�

þ 2

3

jfhwh

/dfd
q2
�

ð32Þ

mq ¼
2

3

d1
fd/d

q ð33Þ
The direction of the plastic flow vector with components ðmp;mqÞ does not, in general, coincide with the

gradients of yield function (21) and thus, the derived flow rule is non-associative. Applying the higher
values for wh, increases the dilatancy in cone region of the yield surface (21).



A.R. Khoei, A. Bakhshiani / International Journal of Solids and Structures 41 (2004) 6081–6110 6089
2.4. Parameter calibration

In this section, the calibration procedure for the endochronic plasticity model is developed based on a

series of isostatic, triaxial, direct shear and uniaxial compression tests. In order to relate the material
parameters of the proposed endochronic theory to cone-cap plasticity model, substitute Eqs. (22) and (23)

in (21) and solve it for p at q ¼ 0. It yields to two roots for p, the points of intersection of yield surface with

p-axis. The positive root is pT and negative root is pc (Fig. 2)
pc ¼ �/hgðgÞ ð34Þ
pT ¼ p0cðgÞ ð35Þ
In Eq. (34), the absolute value of pc increases as a function of gðgÞ. Thus, the evolution of material relative

density causes hardening behavior of material. In Eq. (35), the position of pT is a function of relative density
and depends on the parameters of deviatoric scale function. By choosing the non-zero values for parameters

of cðgÞ, a density-dependent cohesion can be introduced to the endochronic model. Typical evolution of

yield surface (21) is shown in Fig. 3 for different values of pT and pc in meridian plan. In Eq. (34), a

hydrostatic compression test is required to determine the parameters of function gðgÞ. The stress–strain

curve obtained from this test gives the evolution of hydrostatic compression yield stress pc as a function of

material density.

As the material parameter wh is generally a small value relative to /d, the intersection of yield surface

with q-axis, defined by q0 in Fig. 2, can be obtained with good approximation from Eqs. (21)–(23) as
Fig. 3. Trace of cone-cap yield function on the meridian plane for different values of pT and pc.
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q0 ffi
ffiffiffi
3

2

r
hðhÞ/dcðgÞ ð36Þ
The ratio of q0=pT is the slope of cone part of yield surface in meridian plan, shown in Fig. 2, which can

be related to the friction angle of material. Considering /d as a constant known value, p0 can be determined
from Eqs. (35), (36) and friction angle of material, estimated by a standard test, such as hollow cylinder test,

simple shear test, or direct shear test. It should be mentioned that /d and /h appear as coefficients of fd and
fh in the yield function, so they are not independent material parameters and can be given any constant

values. In Fig. 4, the effect of variation of p0 on the shape of yield function is shown in meridian plan. It

must be noted that q0, defined in Eq. (36), can be easily related to the cohesion of material. The parameters

of function cðgÞ are determined from the variation of material cohesion with relative density, estimated

experimentally by simple compression experiments on samples with different initial relative density.

The function hðhÞ controls the shape of yield surface (21) in the deviatoric plane. If e ¼ 1, it results in a
circular trace of yield function on deviatoric plan. If e < 1, it causes triangularity of deviatoric trace along

the hydrostatic axis. Fig. 5 shows the trace of yield function on deviatoric plan for different values of shape

parameter e. In Fig. 6, the shapes of yield surface are depicted in principal stress space.

It should be mentioned that the behavior of the proposed endochronic model is investigated with one

term kernel function. In fact, the application of more than one term in kernel functions adds kinematic

hardening to the endochronic model and improves the behavior of model in cyclic loading condition.

Obviously, for calibration of material parameters in this case, additional results of cyclic loading test are

necessary. Although one term kernel function is sufficient here for the proposed application, the numerical
integration of constitutive relations is implemented for the general n-term kernel functions. In addition, it is

worth mentioning that as the cone-cap yield surface consists of two different yield functions, special

treatment should be made to avoid numerical difficulties in the intersection of these two surfaces, however,

the derived yield surface (21) does not have such a drawback.
3. The hypoelasto-plastic finite strain deformation

In order to simulate large deformations in powder compaction processes, the hypoelasto-plastic method

is employed based on additive decomposition of rate of deformation into the endochronic plasticity theory.
The endochronic model, described in Section 2, is extended to finite strain range using additive elastic–

plastic kinematics and a hypoelasto-plastic formulation. The constitutive model is stated in unrotated frame

of reference in which achieving incremental objectivity is simple and all the constitutive relations are cast

regardless of finite rotations (Johnson and Bammann, 1984; Ponthot, 2002). This approach is rather dif-

ferent with respect to the multiplicative decomposition of the deformation gradient, which is based on the
Fig. 4. Trace of cone-cap yield function on the meridian plan for different values of p0.



Fig. 6. The shape of cone-cap yield function in principal stress space ðe ¼ 1Þ.

Fig. 5. Trace of cone-cap yield function on deviatoric plan for different values of shape parameter e.
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work of Lee (1969) and used in numerous recent papers (Eve and Reddy, 1994; Fish and Shek, 2000). The

proposed integration algorithm treats the elasto-plastic and the elasto-viscoplastic cases in a unified way

(Khoei et al., 2003b). This approach greatly simplifies the numerical implementation of endochronic
constitutive model.

The hypoelastic material law relates the rate of stress to the rate of deformation. A general form of the

hypoelastic relation is defined as
rr ¼ f ðr;DÞ ð37Þ
where rr represents any objective rate of Cauchy stress.
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There are many objective rates in literature, such as: Jaumann, Truesdell and Green–Naghdi rates.

Dienes (1979) has shown that there is spurious oscillation in the stress, which arises directly from the nature

of the Jaumann rate. Vanishing of Truesdell rate does not ensure that the invariants of Cauchy stress tensor

are constant (Johnson and Bammann, 1984), so in this case further plastic flow will exist. In this formu-
lation the constitutive model is posed in terms of Cauchy stress in unrotated configuration as
r̂ ¼ RTrR ð38Þ
where R is a proper orthogonal tensor. The conjugate strain rate to r̂ is bD defined in unrotated frame of

deformation by bD ¼ RTDR. Thus, the hypoelastic part of constitutive equation is
_̂r ¼ C e : bDe ð39Þ

bD ¼ bDe þ bDp ð40Þ

where C e is the Hook stress–strain tensor defined by
C e
ijkl ¼ Kdijdkl þ 2l dikdjl

�
� 1

3
dijdkl

�
ð41Þ
where K and l are the bulk and shear modulus of material, respectively.

In order to complete the hypoelasto-plastic constitutive equation in the context of finite deformation

plasticity, the endochronic constitutive equations are presented in unrotated frame as
r̂dev ¼ 2

Z zd

0

Udðzd � z0Þ
bDp

dev

_z0
dz0 ð42Þ

r̂h ¼ 2

Z zh

0

Uhðzh � z0Þ
bDp

vol

_z0
dz0 � 2

Z zh

0

Wðzh � z0Þr̂dev :
bDp

dev

_z0
dz0 ð43Þ

_zd ¼
_1

fdðg; p; hÞ
ð44Þ

_zh ¼
_1

fhðg; pÞ
ð45Þ

_12 ¼ bDp
dev :

bDp
dev þ j2ðbDp

volÞ
2 ð46Þ
where
r̂ ¼ r̂dev þ r̂hI ð47Þ

r̂dev ¼ dev½r̂� ð48Þ

r̂h ¼
1

3
tr½r̂� ð49Þ

bDp ¼ bDp
dev þ bDp

volI ð50Þ

bDp
dev ¼ dev½bDp� ð51Þ
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bDp
vol ¼ tr½bDp� ð52Þ
and dev½�� ¼ ½�� � 1
3
tr½��I, with I denoting the spatial metric tensor.
4. Numerical integration of constitutive equations

The major challenge in the integration of the rate constitutive equations in finite strain range is to

achieve incremental objectivity. The implementation of objective stress rates in constitutive equations re-

sults in objective formulation only in the limit of very small time step (Hughes and Winget, 1980). As the

standard time discretization procedures cannot be lead to incremental objectivity, one efficient way to

overcome this problem is to state constitutive equations in corotational frame. Assuming that the variables

of the model at step n and the incremental displacement field Du ¼ nþ1x� nx at load step nþ 1 are known,

the updated value of different variables of the model will be calculated at load step nþ 1. The left super-

script refers to the load step which is omitted for current step.
Applying the backward Euler scheme to Eq. (39) yields
r̂ ¼ nr̂þ C e : bDeDt ð53Þ

Dr̂ ¼ C e : Dd̂e ¼ C e : ðDd̂� Dd̂pÞ ð54Þ

in which the corotational increment of D is given based on the midpoint rule as
Dd̂ ¼ Dt bD ¼ 1

2
DU nþ1

2U�1
�

þ nþ1
2U�1DU

�
ð55Þ
where DU ¼ nþ1U� nU and nþ1
2U ¼ 1

2
ðnþ1Uþ nUÞ.

One of the most important parts of numerical scheme is numerical integration of endochronic consti-

tutive equations. Substituting Eqs. (15)–(17) in (42) and (43) give
r̂dev ¼ 2
Xm
r¼1

Z zd

0

Are
�arðzd�z0Þ

bDp
dev

_z0
dz0 ð56Þ

r̂h ¼ 2
Xm
i¼1

Z zh

0

Bie
�biðzh�z0Þ

bDp
vol

_z0
dz0 � 2

Xm
i¼1

Z zh

0

1

jfh
Cie

�biðzh�z0Þr̂dev :
bDp

dev

_z0
dz0 ð57Þ
In order to integrate Eqs. (56) and (57) numerically, the loading is divided into n steps, thus
r̂r
devðnzdÞ ¼ 2

Xn
k¼1

Ar

ar

k Dd̂pdev

� �
kDzd

e�arðnzd�k zdÞ
h

� e�arðnzd�k�1zdÞ
i

ð58Þ

r̂devðnzdÞ ¼
Xm
r¼1

r̂r
devðnzdÞ ð59Þ

r̂i
hðnzhÞ ¼ 2

Xn
k¼1

Bi

bi

k Dd̂p
vol

� �
kDzh

e�biðnzh�k zhÞ
h

� e�biðnzh�k�1zhÞ
i
� 2

Xn
k¼1

1

jf k
h

Ci

bi

�
kr̂dev :

k Dd̂pdev

� �
kDzh

e�biðnzh�k zhÞ
h

� e�biðnzh�k�1zhÞ
i

ð60Þ
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r̂hðnzhÞ ¼
Xm
i¼1

r̂i
hðnzhÞ ð61Þ
It is worth mentioning that the striking feature of the above scheme is the direct integration of hereditary

function. Such a procedure, in general leads to more accurate results with much smaller number of
increments. Eqs. (58) and (59) can be simplified as
r̂r
devðnzdÞ ¼ r̂r

devðn�1zdÞe�arnDzd þ 2
Ar

ar

n Dd̂pdev

� �
nDzd

ð1� e�arnDzdÞ ð62Þ
r̂i
hðnzhÞ ¼ r̂i

hðn�1zhÞe�bi
nDzh þ 2

Bi

bi

n Dd̂p
vol

� �
nDzh

ð1� e�bi
nDzhÞ � 2

jnfhnDzh

Ci

bi

n�1r̂dev :
n Dd̂pdev

� �� �
ð1� e�bi

nDzhÞ

ð63Þ
The incremental form of endochronic constitutive equations can be obtained from Eqs. (62) and (63) by

taking step nþ 1 as current step. The incremental equations which is necessary in the numerical modeling

of initial strain are as follows
Dr̂dev ¼
Xm
r¼1

n r̂r
dev

� �
ðe�arDzd � 1Þ þ 2

Dd̂pdev
Dzd

Xm
r¼1

Ar

ar
ð1� e�arDzdÞ ð64Þ
Dr̂h ¼
Xm
i¼1

n r̂i
h

� �
ðe�biDzh � 1Þ þ 2

Dd̂p
vol

Dzh

Xm
r¼1

Bi

bi
ð1� e�biDzhÞ � 2ðnr̂dev : Dd̂

p
devÞ

jnþ1fhDzh

Xm
r¼1

Ci

bi
ð1� e�biDzhÞ ð65Þ
Dr̂ ¼ C e : ðDd̂� Dd̂pÞ ð66Þ
D12 ¼ Dd̂pdev : Dd̂
p
dev þ j2 Dd̂p

vol

� �2
ð67Þ
Dzd ¼
D1

fdðnþ1g; nþ1p;nþ1 hÞ ð68Þ
Dzh ¼
D1

fhðnþ1g; nþ1pÞ ð69Þ
A set of seven algebraic equations can be solved for the unknowns values of Dd̂pdev and Dd̂p
h by applying the

Newton–Raphson method. Once Dd̂p is known, the corotational increment of stress tensor is derived from

Eq. (66). The value of stresses will be then calculated from relations r̂ ¼ nr̂þ Dr̂ and r ¼ Rr̂RT.

It can be seen from Eq. (55) that the proposed scheme is trivially incrementally objective. In the case of

rigid body motion, nþ1U ¼ nU and from Eq. (55) bD ¼ 0, thus the stress tensor will be exactly updated by

relation nþ1r ¼ DRnrDRT. It should be noted that in this scheme the rotation tensor R is exactly computed

from the polar decomposition and not from the numerical integration of rate equation _x ¼ Xx, with X
denoting a spin tensor and x indicating an orthogonal rotation tensor.
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5. Model assessment and numerical results

In order to illustrate the efficiency and accuracy of the material model and numerical schemes, the

powder compaction simulation of a multi-level, shaped tablet and cylindrical MH-100 iron powder com-
ponents are analysed numerically. The material parameters in the constitutive model are calibrated for two

samples of metal powder by fitting the model to reproduce data from true-triaxial compression experi-

ments. The endochronic constitutive equations and the proposed numerical integration, described in Sec-

tions 2–4, along with the consistent linearization schemes, presented in Appendix A, have been

implemented in a non-linear finite element code to evaluate the capability of the model in simulating

powder compaction process.
5.1. A multi-level component

The first example is the simulation of a multi-level compaction process chosen to demonstrate the

performance of the present formulation for the complicated die geometry of a multi-level component. The

experimental data are obtained from a set of compaction experiments on an iron-based powder (95% by
weight) performed by Doremus et al. (1995). Both isostatic compaction and triaxial tests were driven. The

raw material is composed of iron, copper, wax and zinc stearate, these two last components being admixed

as internal lubricants. The density of the solid phase was about 7.54 g/cm3 and the tap density powder was

about 3.67 g/cm3.
Box 1. Endochronic material parameters. The mixed iron powder

Young modulus: EðgÞ ¼ E0
g�ge
1�ge

� �3
, E0 ¼ 18; 000 MPa, ge ¼ 0:25

Poisson ratio¼ 0.35

Initial apparent density¼ 3.67 g/cm3

Solid density¼ 7.54 g/cm3

Hereditary function parameters:
A1 ¼ 300; 000 MPa

a1 ¼ 1000

B1 ¼ 116; 700 MPa

b1 ¼ 300

Deviatoric scale function parameters: a1 ¼ 1:5, a2 ¼ 0

Hydrostatic scale function parameters: m ¼ 7:8, gm ¼ 0:4
The particles had an irregular shape and their size was between 10 and 100 lm. The compacted specimen has

an initial height of H0 ¼ 42 cm and diameter of D0 ¼ 20 cm. Triaxial tests consisted of an initial isostatic

compaction step up to pressure value of 400MPa followed by a subsequent uniaxial compaction step carried

out by keeping pressure constant and increasing the axial stress up to a maximum value of 1250 MPa.
The powder material is modeled by endochronic plasticity with one term for deviatoric and hydro-

static hereditary functions and isotropic elastic properties. The scale functions fdðgÞ and fhðgÞ are deter-

mined from the material properties in terms of relative density. These functions have the highly non-linear

forms to cause the hardening behavior of the deviatoric and volumetric plastic response. The following

forms, which are appropriate for metal powder, are proposed for the deviatoric and hydrostatic scale

functions
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fdðgÞ ¼ gþ a1g2 þ a2g3 ð70Þ

fhðgÞ ¼ gm
g� gm
1� gm

ð71Þ
The parameters of hydrostatic scale function (m and gm) can be calculated by fitting the response of model

to the volumetric strain versus hydrostatic pressure curve obtained from the isostatic compression test.

Having determined the parameters of fhðgÞ, the response of the model will be fitted to the results of triaxial

test, in order to obtain the parameters of fdðgÞ. The material properties for simulation of powder are given

in Box 1.
Fig. 7(a) presents the evolution of the density versus hydrostatic pressure. This evolution is the

characteristic of metal powders. The experimental and numerical results are compared for the isostatic
. (a) Density versus hydrostatic pressure during isostatic compaction, (b) density versus axial strain in triaxial tests at given

ing pressure.
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compression step. The applicability of the proposed endochronic theory to handle the volumetric terms is

evident in this figure. Fig. 7(b) corresponds to the complete triaxial compression tests. The density versus

axial strain curves are plotted for different values of the hydrostatic pressure attained at the end of isostatic

compression step. Remarkable agreements between experimental and numerical results are obtained.
The numerical results are obtained for a multi-level compaction process by Oliver et al. (1996). The

simulation is performed with the powder material parameters presented in Box 1. The initial density at the

start of simulation is 2.94 g/cm3. The compact specimen is a bearing used in the automotive industry whose

axisymmetric geometry is shown in Fig. 8. The initial and final shapes are plotted in this figure with dashed

and full lines. The compaction is performed by means of the action of five punches, labeled a, b, c, d and e

in Fig. 8(a). The component is modeled by 2D axisymmetric structured mesh of 813 bilinear elements.

Friction effects are considered through a Coulomb’s friction model with a friction coefficient of l ¼ 0:1
(Oliver et al., 1996). A numerical model of the frictional contact based on penalty approach is used to
simulate sliding resistance at the tool–workpiece interface. The deformed mesh at the final stage of com-

paction is plotted in Fig. 8(b). In Fig. 8(c), the relative density contour at the final stage of compaction

process is presented. The fairly uniform distribution of relative density is also found by Oliver et al. (1996).

A lower relative density distribution is detected at the top part of the sample. The range of the variation of

relative density in the sample is similar to those presented by Oliver et al. (1996).
5.2. A shaped tablet component

The second example demonstrates the performance of the present formulation in complicated die

geometry and simultaneous high distortional and volumetric deformation of elements in a shaped tablet

component. The powder material is modeled using endochronic plasticity with the deviatoric and hydro-

static scale functions defined by Eqs. (70) and (71). The material properties for simulation of powder are

given in Box 1. The endochronic material parameters are used to simulate the compaction process of a

shaped tablet component, whose axisymmetric geometry is shown in Fig. 9(a). The geometry is used by
Fig. 8. A multi-level component: (a) geometry and loading description (after Oliver et al., 1996), (b) final deformed mesh, (c) the density

distribution at final stage of compaction.



Fig. 9. A shaped tablet component: (a) geometry and loading description (after Lewis and Khoei, 2001), (b) final deformed mesh, (c)

the density distribution at final stage of compaction.
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Lewis and Khoei (2001) to show the applicability of their formulation in tablet pressing process. The

Coulomb friction coefficient is assumed l ¼ 0:08. The compaction simulation is performed by means of the

upper and lower punches. Some problems are caused by discontinuities in geometry, for example the flow

around corners and the multi-punch setup.
The deformed mesh at the final stage of compaction is plotted in Fig. 9(b). The relative density contour

at the final stage of compaction is presented in Fig. 9(c). From the contour of final stage of compaction, it

can be observed that the density in the right hand region of tablet is greater than other parts while regions

with low density appear between high-density regions. The distribution of density in final stage of com-

paction is a bit different from results reported by Lewis and Khoei (2001). These discrepancies can be

related to different treatments of friction between powder and punches. While in the present simulation

contact between powder and punches is modeled with Coulomb friction of l ¼ 0:08, in this reference the

relative movement between powder and punches is restrained.

5.3. Compaction process of MH-100 iron powder component

The last example describes the applicability of endochronic model in determining the material param-

eters for dry MH-100 iron powder and predictive capability of the model in simulating the powder com-

paction process. The material parameters are calibrated by fitting the endochronic model to reproduce the

data from the simple compression experiments. Since such experiments on powder materials typically result

in non-homogeneous deformations, the fitting procedure requires numerical simulation of the experiments.
Gu et al. (2001) produced the material parameters of the MH-100 iron powder for their cone-cap plasticity

using the true-triaxial compression experiments, torsion ring-shear experiments, and simple compression

experiments.

In order to determine the endochronic material properties in terms of relative density, the following

specific forms are proposed for the dependence of deviatoric scale function fdðg; pÞ and hydrostatic scale

function fhðg; pÞ on g and p
fdðg; pÞ ¼ cðgÞ � p
p0

ð72Þ

fhðg; pÞ ¼ ð1� wÞgðgÞ � w
p
/h

ð73Þ
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where cðgÞ and gðgÞ are the increasing functions of relative density, defined as
Fig. 10

compr

Table

The va

45�/
30�/
70�/
70�/
70�/
30�/
cðgÞ ¼ Acg
mc
g� g0
1� g0

gðgÞ ¼ Agg
mg
g� g0
1� g0

ð74Þ
where Ac, Ag, mc and mg are material parameters with positive values.

5.3.1. Material parameters of MH-100 iron powder

In order to determine the endochronic material parameters for the consolidation mechanism, the data is

obtained from experiments conducted with a high-pressure true-triaxial apparatus developed by Gu et al.

(2001). Fig. 10(a) shows a schematic top view of the apparatus. During an experiment, powder is poured

into the cubical cavity created by the blocks. Blocks 1 and 2 are angled sliding blocks sitting on the cor-

responding angled guiding-blocks. When the top block (not shown) moves downward in the 3-direction,

sliding blocks 1 and 2 move inward in the 1-direction and 2-direction, respectively, and the powder in the

initially cubical cavity is compressed in three orthogonal directions (Gu et al., 2001). The amount of
compression in each of the lateral directions can be controlled by changing the angles of the sliding and

guiding angled blocks. A plot of proportional strain paths attainable in the apparatus with the available

angles blocks is shown in Fig. 10(b). The notation x�/y� denotes the angles of the blocks in the 1- and 2-

directions, respectively.

In order to perform the numerical simulations of the true-triaxial tests on MH-100 iron powder, a single

three dimensional element is numerically modeled using endochronic plasticity. The simulations are carried

out by subjecting an eight-noded brick element to different principal stretchings D11, D22, D33 acting on sides

normal to the 1-, 2- and 3-directions. The relative values of the applied stretchings corresponding to the
different combinations of angled blocks are given in Table 1. The Young’s modulus and Poisson’s ratio of
. (a) A schematic of the true-triaxial compression apparatus (Gu et al., 2001), (b) strain paths achievable in the true-triaxial

ession experiments.

1

lues of applied stretchings corresponding to different combinations of angled blocks

D11 D22 D33

45� )1.0 )1.0 )1.0
30� )1.732 )1.732 )1.0
70� )0.364 )0.364 )1.0
30� )0.364 )1.732 )1.0
45� )0.364 )1.0 )1.0
45� )1.732 )1.0 )1.0
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MH-100 iron powder compacts have been experimentally determined by Brown and Weber (1988), which

are used in the following simulations. The endochronic material parameters are estimated by fitting the

response of model to the stress–strain curves obtained from the true-triaxial tests. Gu et al. (2001) measured

the normal strains fe1; e2; e3g and compressive normal stresses fr1; r2; r3g in each experiment for the dif-
ferent angled block arrangements. The hydrostatic scale function parameters corresponding to the cap part

of cone-cap plasticity are obtained as
gðgÞ ¼ g2:5
g� 0:45

1� 0:45
; /h ¼ 500 MPa; w ¼ 0:5
Fig. 11 shows a comparison between the calculated and measured stress–strain curves for the different

deformation rate histories. For example, Fig. 11(a) shows the experimental results with the 45�/45� angled
block arrangement. The corresponding stress versus strain curves are almost identical in all three directions.

Thus, the 45�/45� angled block arrangement corresponds to an approximate hydrostatic compression test.

Fig. 11(d) shows the stress versus strain curves for the experiment with the 70�/30� angled block

arrangement. In this case, the stress–strain curves in three directions are all different from each other, and a

true-triaxial stress state is achieved. The numerical results for all the different triaxial loading paths are in

very good agreement with the experiments.
In order to evaluate the deviatoric scale function parameters corresponding to the cone part of cone-cap

plasticity, the data is obtained from experiments conducted with the distortion mechanism of a torsion ring-

shear apparatus, as well as by using data obtained from simple compression experiments on unsintered

compacts with different initial relative densities (Gu et al., 2001). A schematic of the apparatus is shown in

Fig. 12. In this apparatus, a thin hollow cylindrical specimen of the powder of inner and outer diameters of

63.50 and 69.85 mm, respectively, is confined between two floating concentric confining rings, and two

annular punches. One of the annular punches is fixed, and the other can be displaced in the axial direction

as well as twisted about its axis to subject the powder specimen to various combinations of axial com-
pression and twist. Gu et al. (2001) performed a set of experiments in which the ring specimens were first

axially compressed under different normal pressures to different initial relative densities, and the com-

pressed powder rings are then sheared while keeping the corresponding normal pressures constant. Based

on the torsional portion of these experiments, the nominal residual friction coefficient of MH-100 powder

was estimated 0.45 (Gu et al., 2001). Applying the procedure described in Section 2.4, choosing /d ¼ 90 and

using Eqs. (34) and (35) results in the value of 245 MPa for p0.
In order to evaluate the other deviatoric scale function parameters, i.e. cðgÞ, the variation of material

cohesion with relative density is obtained using simple compression experiments on samples with different
initial relative density (Gu et al., 2001). Cylindrical specimen is formed with a diameter of 25.4 mm and

height of 15 mm in a uniaxial strain compaction apparatus. Unconfined simple compression experiments

are then performed on these specimens. An estimation of the cohesion with relative density for MH-100

iron powder is shown in Fig. 13. The curve plotted in this figure is the fit of our proposed functional form

for cðgÞ
cðgÞ ¼ 1:4g3
g� 0:45

1� 0:45
In order to illustrate the efficiency and accuracy of the endochronic material model in large strain range,

the uniaxial compaction experiment is analysed numerically. The finite element modeling of specimen is

performed using 2D axisymmetric structured mesh of 625 bilinear elements, as illustrated in Fig. 14. As a

displacement based formulation is used, the implementation of loading is achieved by the use of prescribed

nodal displacements. The direction of this displacement is in a vertical plane which represents the axial

punch load. Fixed nodal values are employed to represent the fixed bottom punch. Simulation is performed
with powder material parameters presented in this section using different initial relative densities of 0.696,



Fig. 11. Comparison of the calculated stress–strain responses against measured and other simulated results in the true-triaxial com-

pression experiments with different angled block arrangements.

A.R. Khoei, A. Bakhshiani / International Journal of Solids and Structures 41 (2004) 6081–6110 6101
0.766, 0.813 and 0.850. The evolution of axial stress–strain curves are depicted in Fig. 15 for different initial

relative densities. The numerical results are in very good agreement with the experiments given in this
figure, and the only major difference appears in the non-linear behavior at the beginning of the measured

stress–strain curves. This non-linear behavior is attributed to the initial seating and setting errors during the

experiments, reported by Gu et al. (2001).



Fig. 13. Variation of the cohesion with relative density for MH-100 iron powder.

Fig. 12. Schematic of the torsion ring-shear apparatus (Gu et al., 2001).
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5.3.2. Simulation of a compaction process

In order to demonstrate the performance of the present model in simulating the metal powder during

compaction process, the uniaxial compaction of a cylindrical MH-100 iron powder component is analysed

numerically. The experimental data and numerical results are available for this example and are used for

comparison. The powder material is modeled by the endochronic plasticity with the material parameters

obtained in previous section and summarized in Box 2. The finite element modeling of the cylindrical

component is performed using an axisymmetric representation and a structured mesh of 144 bilinear ele-

ments. The initial geometry, boundary conditions and FE mesh are depicted in Fig. 16(a). The die wall
friction is simulated with Coulomb friction coefficient l ¼ 0:37 (Gu et al., 2001) and the initial relative

density of the powder is g0 ¼ 0:42. The problem has been solved with displacement control by increasing

top punch displacement up to 30 mm while the bottom punch is fixed.



Fig. 15. Simple compression of compacted specimens; axial stress versus axial strain curves for MH-100 iron powder: (a) experimental

results (Gu et al., 2001), (b) endochronic model.

Fig. 14. Simple compression specimen: an axisymmetric FE mesh.
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The evolution of top punch vertical reaction force with its vertical displacement is depicted in Fig. 16(b).
Also plotted in this figure, is the experimental result given by Gu et al. (2001). The result shows a good

agreement between the experimental data and numerical simulation obtained by endochronic model. The

relative density distribution over the sample at the end of the simulation is depicted in Fig. 17. The relative



Fig. 16. The uniaxial compaction of cylindrical MH-100 powder component: (a) an axisymmetric FE mesh (after Gu et al., 2001), (b)

the variation of top punch vertical reaction with displacement.

Fig. 17. Cylindrical MH-100 powder component: the calculated density distribution at the final stage of compaction.
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density distribution is in complete agreement with those reported by Gu et al. (2001). This example

demonstrates that the endochronic model is capable to describe the behavior of MH-100 metal powder in

true-triaxial experiments, shear test and axial compression experiments. The results of a powder com-

paction simulation show how the proposed model can be



Box 2. Endochronic material parameters, MH-100 iron powder

Elastic parameters: E ¼ 698 expð5:62gÞ MPa, m ¼ 0:3
Kernel parameters: A1 ¼ 90; 000 MPa, a1 ¼ 1000

B1 ¼ 90; 000 MPa, b1 ¼ 500, b2 ¼ 80, b3 ¼ 5

C1 ¼ 0;C2 ¼ 15;C3 ¼ 1:5 MPa

Initial relative density: g0 ¼ 0:45
Deviatoric scale function parameters:

cðgÞ ¼ 1:4g3
g� g0
1� g0

; p0 ¼ 245 MPa

Hydrostatic scale function parameters:

gðgÞ ¼ g2:5
g� g0
1� g0

; w ¼ 0:5; /h ¼ 500 MPa

Coupling parameter: j ¼ 1:5
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used to predict the density distribution in the compact and punch forces accurately.
6. Conclusions

In the present paper, an advanced theory of plasticity was developed based on an endochronic model for

powder forming processes. The cone-cap yield surface was derived from endochronic constitutive equa-

tions, assuming a special form for the kernel functions. The flow rule and the dilatancy condition of the

proposed plasticity model were derived and a procedure for calibration of material parameters of the model

was proposed. A general algorithm for the endochronic theory along with the constitutive equations in

finite strain and their numerical integration were established. The elastic response was stated by a hypo-

elastic model and endochronic constitutive equations were developed in the unrotated frame of reference.

Constitutive equations were obtained based on coupling between deviatoric and hydrostatic behavior
through out the endochronic theory for rate-independent, plastically compressible, initially isotropic

materials. Finally, the tangent modulus consistent with the integration algorithm of elastic–plastic con-

stitutive equations was extracted.

The material model and numerical schemes were examined for efficacy in the modeling of a multi-level,

shaped tablet and cylindrical MH-100 iron powder components. It is demonstrated that the model is

capable to describe the behavior of different metal powders in true-triaxial experiments, shear test and axial

compression experiments. The results of powder compaction simulations show that the endochronic theory

in the context of finite deformation plasticity can be used to predict the density distribution in the compact
in an efficient and accurate manner.
Appendix A. Consistent tangent operator

In order to achieve the quadratic convergence rate of Newton method in solving the global system of

non-linear equations, it is essential to use the consistent tangent moduli with integration procedure of

constitutive equations in forming tangent stiffness matrix (Simo and Taylor, 1985). In this section, the
incremental constitutive equations, derived in Section 4, are linearized to yield consistent tangent modulus.
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Taking material time derivate of Eqs. (64) and (65) yields
D _̂rdev ¼ Hdev
1 D_zd þ Hdev

2 D _̂
d
p

dev ðA:1Þ

D _̂rh ¼ Hh
1D_zh þ Hh

2D
_̂d
p

vol þ Hh
3D _1þ Hh

4 rdev : D
_̂
d
p ðA:2Þ
where
Hdev
1 ¼ 2

Dd̂pdev
Dzd

Xm
r¼1

Are
�arDzd � 2

Dd̂pdev
Dz2d

Xm
r¼1

Ar

ar
ð1� e�arDzdÞ �

Xm
r¼1

ar
nðr̂r

devÞe�arDzd ðA:3Þ

Hdev
2 ¼ 2

Dzd

Xm
r¼1

Ar

ar
ð1� e�arDzdÞ ðA:4Þ

H h
1 ¼ 2

Dd̂p
vol

Dzh

Xm
i¼1

Bie
�biDzh � 2

Dd̂p
vol

Dz2h

Xm
i¼1

Bi

bi
ð1� e�biDzhÞ �

Xm
i¼1

bi
n r̂i

h

� �
e�biDzh þ 2rdev : Dd̂

p

D1

Xm
i¼1

Cie
�biDzh

ðA:5Þ

Hh
2 ¼ 2

Dzh

Xm
i¼1

Bi

bi
ð1� e�biDzhÞ ðA:6Þ

H h
3 ¼ � 2rdev : Dd̂

p

D12
Xm
i¼1

Ci

bi
ð1� e�biDzhÞ ðA:7Þ

H h
4 ¼ 2

D1

Xm
i¼1

Ci

bi
ð1� e�biDzhÞ ðA:8Þ
In order to linearize Dzd and Dzh, the relative density g, Lode’s angle h and intrinsic time 1, should be

determined. For this purpose, taking the time derivative from Eq. (8) and applying the identity of

oJ=oU ¼ JU�1, we will arrive to
_g ¼ �gU�1 : _U ðA:9Þ
Using Eq. (55), _U can be stated in terms of Dd̂ as
Dt _U ¼ Q�1 : Dd̂ ðA:10Þ
where the fourth-order tensor Q is defined as
Qijkl ¼
1

4
dik

nþ1
2U�1

lj

�
þ dil

nþ1
2U�1

kj þ djl
nþ1

2U�1
ik þ djk

nþ1
2U�1

il

�
ðA:11Þ
Applying relations (6), (41) and (54) and considering _J2 ¼ �r̂dev : _̂rdev and _J3 ¼ J3r̂�1
dev :

_̂rdev, it yields
_hDt ¼ Y : ðDd̂� Dd̂pÞ ðA:12Þ

where
Yij ¼
�2

ffiffiffi
3

p
lJ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4J 3
2 � 27J 2

3

p 3

2J2
r̂ij

��
� 1

3
r̂kkdij

�
þ r̂�1

dev

� �
ij
� 1

3
r̂�1
dev

� �
kk
dij

�
ðA:13Þ
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where D _1 can be obtained by taking time derivative from Eq. (67) as
D _1 ¼ 1

D1
Dd̂pdev : D

_̂
d
p þ j2

D1
Dd̂p

volD
_̂d
p

vol ðA:14Þ
Taking material time derivative of Eq. (68) yields
D_zd ¼
D _1
fd

� D1
f 2
d

ofd
op

_p
�

þ ofd
og

_gþ ofd
oh

_h

�
ðA:15Þ
Applying similar procedure to Eq. (69) yields
D_zh ¼
D _1
jfh

� D1
jf 2

h

ofh
op

_p
�

þ ofh
og

_g

�
ðA:16Þ
Substituting Eqs. (A.1), (A.7), (A.12), (A.14), (A.15) and (A.16) in time derivative equation (47), by lengthy
but straightforward calculation yields
_̂r ¼ N : D _̂
d
p þ P : D _̂

d ðA:17Þ

where
N ¼ Na þNb þN c ðA:18Þ

and
P ¼ Pa þ Pb þ Pc ðA:19Þ

where tensors Na, Nb, N c, Pa, Pb, Pc and Idev are defined as
Na ¼ Hh
2

�
þ KHh

1

D1
jf 2

h

ofh
op

þ j2

D1
Hh

3 þ Hh
1

jfh

� �
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�
I� I ðA:20Þ

Nb ¼ Hd
2 I

dev þ Hh
4 I� r̂dev þ K

D1
f 2
d

ofd
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�
þ j2

fdD1
Dd̂p

vol

�
Hd

1 � I ðA:21Þ

N c ¼ D1
f 2
d

ofd
oh

Hd
1 � Yþ 1

D1fd
Hd

1 � Dd̂pdev þ
1

D1
Hh

3

�
þ Hh

1

jfh

�
I� Dd̂pdev ðA:22Þ

Pa ¼ �D1
f 2
d

ofd
oh

Hd
1 � Y ðA:23Þ

Pb ¼ Hh
1 g

D1
jf 2

h

ofh
og

I� ðU�1 : Q�1Þ þ g
D1
f 2
d

ofd
og

Hd
1 � ðU�1 : Q�1Þ ðA:24Þ

Pc ¼ �KHh
1

D1
jf 2

h

ofh
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I� I� K
D1
f 2
d

ofd
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Hd
1 � I ðA:25Þ

Idevijkl ¼
1

2
ðdikdjl þ dildjkÞ �

1

3
dijdkl ðA:26Þ
Taking material time derivative from Eq. (66) and substituting the result in Eq. (A.17), gives
_̂r ¼ C
p
: D _̂

d ðA:27Þ
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where
C
p ¼ C eðC e þNÞ�1ðP þNÞ ðA:28Þ
In order to complete the derivation of consistent modulus, the linearization of nþ1R and Dd̂ is necessary.

For consistent linearization of nþ1R, we start by relation
L ¼ _FF�1 ¼ RRT þ R _UU�1RT ðA:29Þ

Pre-multiplying Eq. (A.29) by RT and post-multiplying by F yields
RTLF ¼ RT _RUþ _U ðA:30Þ

Subtracting (A.30) from its transpose, after some manipulation results in
_R ¼ G : L ðA:31Þ

where
G ijkl ¼ ðRimUjn � RinUjmÞ�1ðRkmFln � RknFlmÞ ðA:32Þ

Substituting Eq. (A.31) to (A.30) gives _U in terms of L as
_U ¼ H : L ðA:33Þ

where
H ijkl ¼ ðRkiFlj � RmiUnjGmnklÞ ðA:34Þ

Applying relation (55) to evaluate D _̂

d appeared in Eq. (A.27), we obtain
_̂
d ¼ eG : nþ1 _U ðA:35Þ
where
eGijkl ¼
1

2
nþ1

2U�1
kj dil

�
þ nþ1

2U�1
ik djl �

1

2
DUim

nþ1
2U�1

mk
nþ1

2U�1
lj � 1

2
DUmj

nþ1
2U�1

ik
nþ1

2U�1
lm

�
ðA:36Þ
Substituting Eq. (A.33) in (A.35) yields,
_̂
d ¼fH : L ðA:37Þ
where fH is a fourth-order tensor given as
fH ¼ eG : H ðA:38Þ

Substituting Eq. (A.37) into Eq. (A.27) yields
_̂r ¼ C : L ðA:39Þ

where
C ijkl ¼ C
p

ijmn
fHmnkl ðA:40Þ
Applying Eqs. (A.31) and (A.39) along with _̂r ¼ RT _rRþ _RTrRþ RTr _R, yields
_r ¼ eC : L ðA:41Þ

where
eC ijkl ¼ RimCmnklRjn � RimGnmklrnj � rimGmnklRjn ðA:42Þ
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