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Abstract

In this paper, a new approach is developed based on an endochronic density-dependent plasticity model for
describing the isothermal deformation behavior of metal powder at low homologous temperature. As large deforma-
tions are observed in powder compaction processes, the endochronic constitutive model is presented based on large
strain plasticity and an integration scheme is established for the rate constitutive equations. Endochronic constitutive
equations are established based on coupling between deviatoric and hydrostatic behavior. The elastic response is stated
in term of hypoelastic model and endochronic constitutive equations are stated in unrotated frame of reference. Finally,
the algorithmic modulus consistent with numerical integration algorithm of constitutive equations is extracted. Al-
though the concept of yield surface has not been explicitly assumed in endochronic theory, it is demonstrated that the
cone-cap yield surface can be derived as a special case of the proposed endochronic model. The material parameters in
endochronic model are calibrated for two samples of metal powder by fitting the model to reproduce data from true-
triaxial compression experiments. The numerical schemes are examined for efficiency and accuracy in the modeling of
three powder compaction components.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The knowledge of the behavior of powder material undergoing cold compaction is necessary for pre-
dicting the final shape and the density distribution within the parts, and for preventing the failures that can
occur during the subsequent sintering. Such components vary from simple bush families, which are
appropriate for bearing applications, through to complex multi-level parts, which are used in automatic
transmission systems. The powder compaction process transforms the loose powder into a compacted
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sample with a density increase. Design of a compaction process consists, essentially, in determining the
sequence and relative displacements of die and punches in order to achieve this goal. The design process,
which has to be done for any new type of piece to be manufactured, could be effectively improved by using a
simulation tool, able to predict the mechanical response of the compact along the process.

One of the main ingredients of successful quantitative solution possibilities is an appropriate constitutive
modeling of powder, which can reproduce powder material behavior under complicated loading conditions
and an accurate and stable integration algorithm for constitutive relation. Several constitutive models for
the cold compaction of metal powders have been proposed, including: microscopic models (Fleck et al.,
1992, 1995; Ransing et al., 2000; McMeeking et al., 2001), flow formulations (Lewis et al., 1993) and solid
mechanics models (Brown and Weber, 1988; Chenot et al., 1990; Brekelmans et al., 1991; Haggblad and
Oldenburg, 1994; Lewis and Khoei, 1998). The cap plasticity model used in the modeling of geological and
frictional materials, is employed to capture the major features of the response of initially loose metal
powders to complex deformation histories which are encountered in the manufacture of engineering
components by powder metallurgy techniques. The cone-cap model based on a density-dependent
Drucker—Prager yield surface and a non-centered ellipse is developed by Aydin et al. (1996), Khoei and
Lewis (1998, 1999), Brandt and Nilsson (1999) and Gu et al. (2001). A double-surface plasticity model is
developed by Lewis and Khoei (2001) for the non-linear behavior of powder materials in the concept of the
generalized plasticity formulation for the description of cyclic loading. This model is based on the com-
bination of a convex yield surface consisting of a failure envelope, such as a Mohr—Coulomb yield surface
and a hardening elliptical yield cap. The model comprises two surfaces, one to reflect shear failure and the
other to capture densification.

In the analysis of powder forming problems, the non-linear behavior of powder is adequately described
by the cap plasticity model. However, it suffers from a serious deficiency when the stress-point reaches a
yield surface. In the flow theory of plasticity, the transition from an elastic state to an elasto-plastic state
appears more or less abruptly. For powder material it is very difficult to define the location of yield surface,
because there is no distinct transition from elastic to elastic—plastic behavior (Perez-Foguet et al., 2001).
Results of experimental test on some hard metal powder show that the plastic effects begin immediately
upon loading. Thus, an advanced constitutive theory is necessary to demonstrate this phenomenon. In the
present study, an endochronic density-dependent plasticity model is developed to describe the isothermal
deformation behavior of metal powder at low homologous temperature.

The endochronic theory deals with the plastic response of materials by means of memory integrals,
expressed in terms of memory kernels. Formulation of this theory is based on thermodynamical concepts
and provides a unified point of view to describe the elastic—plastic behavior of material, since it places no
requirement for a yield surface and ‘loading function’ to distinguish between loading and unloading. A key
ingredient of the theory is that the deformation history is defined with respect to a deformation memory
scale called intrinsic time. In the original version of the endochronic theory, proposed by Valanis (1971), the
intrinsic time was defined as the path length in the total strain space. The so-called endochronic theory
violates the second law of thermodynamics and leads to constitutive relations, which characterize inherently
unstable materials (Sandler, 1978; Rivlin, 1981). Aiming at the correction of this deficiency, a new version
of the endochronic theory was developed by Valanis (1980) in which the intrinsic time was defined as the
path length in the plastic strain space. The new endochronic plasticity was capable of predicting a stress-
response to deformation processes, including reversal points in loading in agreement with the experimen-
tally observed mechanical behavior of metals. Also, Valanis demonstrated that an introduction of Dirac
delta function into the kernel function leads to a derived result of a yield surface and classical plasticity
models of isotropic and kinematic hardening could be derived as a special case of the endochronic theory.

The first implementation of an endochronic theory into a multi-dimensional finite element code was
made by Lin et al. (1981), who focused on the original endochronic theory with one term exponential for
the kernel function. An implicit finite element algorithm for the modern version of endochronic theory
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without a yield surface was developed by Valanis and Fan (1984), which was incrementally non-linear.
Also, Watanbe and Atluri (1985) presented an implicit finite element algorithm for the modern endochronic
theory. They used the endochronic plasticity with yield surface and the resulting constitutive equations were
incrementally linear. An unconditional stable integration scheme of endochronic constitutive equations was
proposed by Hsu et al. (1991, 1992) and its ability is examined in the modeling of random non-proportional
tests on OFHC copper. Hsu and Griffin (1996) implemented radial return algorithm in integration of
endochronic constitutive equations and applied their formulation to finite element micromechanics
modeling of a unidirectional metal matrix composite subjected to non-proportional cyclic loading.

The endochronic theory was extended to finite deformation with the concept of the corotational rate and
plastic spin by Im and Atluri (1987). They derived the governing equations by using the isoclinic config-
uration as the intermediate configuration and the corresponding second Piola—Kirchhoff stress tensor.
Cases of finite uniaxial compression and torsion were discussed in their work. Wu et al. (1995) incorporated
the concepts of corotational rate, corotational integral and plastic spin to endochronic theory and applied it
to description of rigid-plastic deformation in thin-walled tubes subjected to finite torsion. Pan et al. (1996)
extended the ordinary differential constitutive equations of endochronic theory to simulate elasto-plastic
deformation in the range of finite strain using the concept of corotational rate. Different objective rates
were incorporated into the theory and cases involving metal tubes under torsion and metal rectangular
block under biaxial compression were discussed. An endochronic plasticity theory was developed by Khoei
et al. (2003a) to describe the large deformation in finite strain using the concepts of corotational stress rate
and the additive decomposition of deformation rate. They derived the constitutive equations for thin-
walled tube under torsion to simulate the axial effects for various materials subjected to simple and pure
torsional loading. An elasto-plastic and elasto-viscoplastic endochronic theory was extended to large strain
range on the basis of the additive decomposition of the strain rate tensor and hypoelasticity by Khoei et al.
(2003b). Recently, Khoei et al. (2003c) developed a density-dependent endochronic theory in finite strain
plasticity to simulate the compaction process of powder material.

In this paper, the endochronic plasticity theory developed by Khoei et al. (2003c) for powder compaction
simulation is extended based on coupling between plastic deviatoric and plastic hydrostatic deformation.
The new endochronic model is proposed for a better understanding of the isothermal deformation behavior
of metal powder at low homologous temperature. It is demonstrated how the cone-cap plasticity can be
generated from the proposed endochronic model by using a special form for the kernel functions. As large
deformation is observed in powder compaction process, a hypoelastic—plastic formulation is developed in
the context of finite deformation plasticity. Constitutive equations are stated in unrotated frame of refer-
ence that greatly simplifies endochronic constitutive relation in finite plasticity. While the explicit treatment
of both the integration of constitutive equations and the solution of the equilibrium equation is a common
approach in the highly non-linear behavior of powder compaction simulation, an implicit scheme is em-
ployed to present the efficiently and accurately the method for this type of non-linear problems. An inte-
gration scheme, which is accurate, stable and amenable to consistent linearization is developed. Although
the major challenge in the integration of rate constitutive equations in large deformation analysis is to
achieve incremental objectivity, it has been trivially achieved. Algorithmic modulus consistent with
numerical integration of constitutive equations for the density-dependent endochronic theory is extracted.
The implementation of consistent modulus in global tangent stiffness matrix is essential in preserving the
quadratic rate of convergence of Newton procedure in solving the equilibrium equations. The material
parameters in the constitutive model are calibrated for two samples of metal powder by fitting the model to
reproduce data from true-triaxial compression experiments. In order to demonstrate the efficiency and
accuracy of the proposed constitutive model and computational algorithms, three powder forming pro-
cesses are simulated.

The plan of the paper is as follows: in Section 2, the density-dependent endochronic plasticity model is
developed to represent the response of metal powder. In Section 3, the implementation of endochronic
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plasticity model in large deformation is introduced. In Section 4, the numerical integration of constitutive
equations are extracted. Section 5 is devoted to the assessment of the model and computational procedure.
In Section 6, some concluding remarks are presented. Finally, the consistent tangent modulus, which has an
important role in the convergence rate of global non-linear system of equations is presented in Appendix A.

2. Endochronic constitutive model

Constitutive equations of the endochronic theory for rate-independent, plastically compressible, initially
isotropic material due to plastic volumetric and plastic deviatoric deformation can be expressed as

wa ndeh
Odev — 2/0 qjd(zd —Z ) 7(1;’ dz (1)
& deP i del}
op = 2/0 Gy (zn — 2) d—;ldz/ — 2/0 Y(zy — 2 )Ogey : d;fv dz’ (2)

where @y(zq), Pn(zn) and P(z;,) are material functions called deviatoric, hydrostatic and coupling hereditary
functions. A time scale ¢ is introduced which is independent of elapsed time, but intrinsically dependent on
the deformation of material. It is through this parameter that history effects are introduced into constitutive
equations of endochronic theory.

de? = def,, : dah, + kdel, (3)
dg

dzg=—" 4

¢ fd(napa 9) ( )
d/‘

z = ————— 5

" th(n7p) ( )

where f4(n, p,0) and f,(n, p) are material functions called deviatoric and hydrostatic scale functions. These
functions depend on hydrostatic pressure p, with its positive value in tension, Lode’s angle 0 and relative
density #, defined as

1 3V3%

0= 3 arecos (W) (6)
p

n==" (7)

Ps

where J, and J; are second and third invariants of deviatoric stress tensor, p, is the apparent density in time
t and p, denotes the solid density of material. The relative density 5 evolves in time by the following relation
Mo
1o 8

n=- (8)
where 7, is the initial relative density and J is the third invariant of deformation gradient tensor. In Eq. (3),
Kk is the coupling parameter between the deviatoric and hydrostatic deformations. In above equations, the
total stress tensor is denoted by ¢ and its deviatoric and hydrostatic parts by 64, and ay,. The symbol ¢
represents the total strain tensor by deviatoric and volumetric parts, g4, and &, respectively. The
superscripts ‘e’ and ‘p’ indicate the elastic and plastic components, respectively.
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The kernel functions @4(z4), Pn(zn) and ¥P(z;,) can be expressed in terms of a Dirichlet series as (Valanis
and Peters, 1991)

By(za) = Y Aie™" (9)
=1
By(z) = Y _ Bl (10)
=1
¥(z) = Lefn 11
@ =3 ()
with the requirements that 4;, B;, o;, f5; and C; are non-negative for all values of 7, and the conditions,
=1 %
- < o0 13
; 7 (13)
<o 14)
25 (

These conditions ensure the integrability of ®4(z4), ®n(z,) and ¥(z,) over a finite domain of time scale z.
In numerical application m-term Dirichlet series can be used as (Hsu et al., 1991)

¢d(zd) = ZA,-C_EX’Zd (15)
i=1
By(z) = Y Bel (16)
i=1
Wiz) = L N et 17
(2n) th ie (17)
1

i=

In above relations, coupling between deviatoric and hydrostatic behavior is introduced in endochronic
theory through intrinsic time ¢ leading to dilatant deformation, which is defined by Eq. (3) and the rate
equation (2) through hereditary function ¥(z;). The role of scale functions f4(i7, p, 0) and f;(n, p) is crucial
in the behavior of model. By scaling intrinsic time, these functions cause hardening or softening plastic
behavior as a function of hydrostatic pressure, relative density of material and Lode’s angle.

2.1. Yield function

The concept of yield surface has not been assumed in the endochronic theory of plasticity but it can be
derived implicitly by assuming special forms for the kernel functions of Eqs. (15)-(17). Although the de-
rived yield surface is not used in the integration of the constitutive equations, it is employed in this section
to describe the properties of the proposed endochronic plasticity and the effects of f4(n, p, 8) and f,(n, p) on
its behavior.
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Consider that the kernel functions @4(z4), ®n(z) and ¥(z;,) are expressed by one term of delta function,
they can be written as

<15d(zd) = (;Sdocle’“lzd = ¢d5(2d), o — o0 (18)

Pu(z) = ppfre ™ = ¢yd(zn), By — (19)
1 1

¥(z) = K—fhlphmefﬁlzh = K—fhlﬁhé(zh)a By — o< (20)

where J(x) is Dirac delta function and ¢4, ¢, and v, are positive parameters. Substituting the above
relations in Egs. (1) and (2) and using relations (3)—(5), with some straightforward manipulations leads to
the following relation

3 2 2 203
o5 (50) (prigme) = 1)

where p is the hydrostatic pressure, with positive value in tension, and ¢ is defined as ¢ = \/%cdev : Gdey-

Although the yield surface has not been explicitly assumed in endochronic theory, introducing delta
function to kernels, results implicitly in this concept. In order to present different aspects of Eq. (21), the
following specific forms are proposed for the dependence of deviatoric scale function f4(1,p,0) and
hydrostatic scale function f; (1, p) on g, p and 0

ﬁmnmzmwGw—g) 2)

_y
bn

where py is a positive parameter and  is a positive number in the range of 0-1. In Eq. (22), ¢(y) is an
increasing function of relative density, defined as
n—n,

1—pn

Suln,p) = (1 —y)gn) (23)

() = Ac + Bon™ (24)

m

in which the dependence of ¢(r) on 7 is a power-law form. In above equation, 4., B,, 1,, and m, are material
parameters with positive values. In Eq. (22), 4(0) is defined based on Willam—Warnke function as

H(0) = 2(e2 — 1) cos 0 + (2¢ — 1)\/3¢* —4e + 4(1 — e?)cos? 0 \°
B (2¢ — 1)* +4(1 — €2) cos? 0

(25)

where e is a parameter of the model. In Eq. (23), g(#) is an increasing function of relative density with the
following specific form

n—n,
1—1n

gn) =A™ (26)

where 4, and 7, are positive material parameters. Typical evolution of f4(#, p, 0) and f,(n, p) with y and p
are plotted in Fig. 1. Introducing Eqgs. (22) and (23) into (21) results in a yield function, whose cross
sectional shape on meridian plan is plotted in Fig. 2. This yield surface is very similar to the cone-cap yield
surface, i.e. a combination of Mohr—Coulomb or Drucker—Prager and elliptical yield surfaces, which has
been extensively used by authors to describe the behavior of powder and granular materials (Aydin et al.,
1996; Brandt and Nilsson, 1999; Gu et al., 2001; Lewis and Khoei, 2001).
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Fig. 2. Trace of a typical yield function on meridian plane.
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2.2. Dilatancy condition

The parameters x and y,, in Eqgs. (3) and (20) control the coupling between deviatoric and hydrostatic
responses in behavior of the model. In this section, the effects of these parameters are discussed and a
procedure for their estimation from experimental data are described. Substituting Egs. (19) and (20) in Eq.

(2) yields
o = Ppkfn diol — YpOgey

Eliminating d¢ between Egs. (3) and (27) and considering 64, : delj,, as ||64.|/||dek,, || cost, we obtain the
following relation (Valanis and Peters, 1991)
deP

[[6dev] cOs T 2
1 _ ( dev )
vol l/jh %h

K =
Hdsgev I Ju¥n|Oqevllcos T i ? Ypl|Odev]| cos T ? 1
e (o) H () -

h

de?

dev (27)

(28)

In particular case of triaxial compression test, when the loading condition occurs, cost =1 and the

dilatancy condition will be reduced to the following condition
Oh

Yy > — (29)

l|Gdey ||

The two material parameters ¥, and x can be determined from the results of triaxial compression test. The
constant v, is the ratio of —oy,/||64e|| at the initiation of dilatation, where the effect of de} | is vanished.
After indicating ¥, , the coupling parameter k can be computed by substituting the measured dilatancy rate
ded | /dell,, into Eq. (28).

2.3. Plastic flow rule

In order to investigate the direction of plastic strain increment in stress space, substitute Egs. (4), (5),
(18), (19) and (20) into Eqgs. (1) and (2). It leads to the following relation for increment of plastic strains

dc

de? = — 6y 30
dev _fd(,bd d ( )
dg ( fh 2)
b = ——— (o + ki, L ||6er 31
Svol thd)h Ot KWh ¢dﬁi ||6d || ( )

The above relations are the flow rule, which is implicitly derived from the proposed endochronic model.
The variable d¢ can be interpreted as the counterpart of consistency parameter of classical plasticity
models. The above relations can be written in (p, ¢) stress space using the components of flow vector on the
meridian plan m = (m,, m,) as

_ dg %thlph 2)

" (” T30 ! (32)
2 dec

mq - 5 fd(,bd q (33)

The direction of the plastic flow vector with components (m,,m,) does not, in general, coincide with the
gradients of yield function (21) and thus, the derived flow rule is non-associative. Applying the higher
values for ), increases the dilatancy in cone region of the yield surface (21).
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2.4. Parameter calibration

In this section, the calibration procedure for the endochronic plasticity model is developed based on a
series of isostatic, triaxial, direct shear and uniaxial compression tests. In order to relate the material
parameters of the proposed endochronic theory to cone-cap plasticity model, substitute Egs. (22) and (23)
in (21) and solve it for p at ¢ = 0. It yields to two roots for p, the points of intersection of yield surface with
p-axis. The positive root is pr and negative root is p. (Fig. 2)

Pe = —Png(n) (34)

pr = poc(n) (35)

In Eq. (34), the absolute value of p. increases as a function of g(#). Thus, the evolution of material relative
density causes hardening behavior of material. In Eq. (35), the position of pr is a function of relative density
and depends on the parameters of deviatoric scale function. By choosing the non-zero values for parameters
of ¢(1), a density-dependent cohesion can be introduced to the endochronic model. Typical evolution of
yield surface (21) is shown in Fig. 3 for different values of p; and p. in meridian plan. In Eq. (34), a
hydrostatic compression test is required to determine the parameters of function g(y). The stress—strain
curve obtained from this test gives the evolution of hydrostatic compression yield stress p. as a function of
material density.

As the material parameter , is generally a small value relative to ¢4, the intersection of yield surface
with g-axis, defined by ¢, in Fig. 2, can be obtained with good approximation from Egs. (21)—(23) as

P

Fig. 3. Trace of cone-cap yield function on the meridian plane for different values of py and p..
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w2\ 2H0)0uctn (36)

The ratio of go/pr is the slope of cone part of yield surface in meridian plan, shown in Fig. 2, which can
be related to the friction angle of material. Considering ¢, as a constant known value, p, can be determined
from Egs. (35), (36) and friction angle of material, estimated by a standard test, such as hollow cylinder test,
simple shear test, or direct shear test. It should be mentioned that ¢, and ¢, appear as coefficients of fy and
/n in the yield function, so they are not independent material parameters and can be given any constant
values. In Fig. 4, the effect of variation of py on the shape of yield function is shown in meridian plan. It
must be noted that ¢, defined in Eq. (36), can be easily related to the cohesion of material. The parameters
of function ¢(#) are determined from the variation of material cohesion with relative density, estimated
experimentally by simple compression experiments on samples with different initial relative density.

The function 4(0) controls the shape of yield surface (21) in the deviatoric plane. If e = 1, it results in a
circular trace of yield function on deviatoric plan. If e < 1, it causes triangularity of deviatoric trace along
the hydrostatic axis. Fig. 5 shows the trace of yield function on deviatoric plan for different values of shape
parameter e. In Fig. 6, the shapes of yield surface are depicted in principal stress space.

It should be mentioned that the behavior of the proposed endochronic model is investigated with one
term kernel function. In fact, the application of more than one term in kernel functions adds kinematic
hardening to the endochronic model and improves the behavior of model in cyclic loading condition.
Obviously, for calibration of material parameters in this case, additional results of cyclic loading test are
necessary. Although one term kernel function is sufficient here for the proposed application, the numerical
integration of constitutive relations is implemented for the general n-term kernel functions. In addition, it is
worth mentioning that as the cone-cap yield surface consists of two different yield functions, special
treatment should be made to avoid numerical difficulties in the intersection of these two surfaces, however,
the derived yield surface (21) does not have such a drawback.

3. The hypoelasto-plastic finite strain deformation

In order to simulate large deformations in powder compaction processes, the hypoelasto-plastic method
is employed based on additive decomposition of rate of deformation into the endochronic plasticity theory.
The endochronic model, described in Section 2, is extended to finite strain range using additive elastic—
plastic kinematics and a hypoelasto-plastic formulation. The constitutive model is stated in unrotated frame
of reference in which achieving incremental objectivity is simple and all the constitutive relations are cast
regardless of finite rotations (Johnson and Bammann, 1984; Ponthot, 2002). This approach is rather dif-
ferent with respect to the multiplicative decomposition of the deformation gradient, which is based on the

AN
la

.

ecease in
/

////

N

Fig. 4. Trace of cone-cap yield function on the meridian plan for different values of py.
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Fig. 6. The shape of cone-cap yield function in principal stress space (e = 1).

work of Lee (1969) and used in numerous recent papers (Eve and Reddy, 1994; Fish and Shek, 2000). The
proposed integration algorithm treats the elasto-plastic and the elasto-viscoplastic cases in a unified way
(Khoei et al., 2003b). This approach greatly simplifies the numerical implementation of endochronic
constitutive model.

The hypoelastic material law relates the rate of stress to the rate of deformation. A general form of the
hypoelastic relation is defined as

¢ = f(6,D) (37)

where ¢V represents any objective rate of Cauchy stress.
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There are many objective rates in literature, such as: Jaumann, Truesdell and Green—Naghdi rates.
Dienes (1979) has shown that there is spurious oscillation in the stress, which arises directly from the nature
of the Jaumann rate. Vanishing of Truesdell rate does not ensure that the invariants of Cauchy stress tensor
are constant (Johnson and Bammann, 1984), so in this case further plastic flow will exist. In this formu-
lation the constitutive model is posed in terms of Cauchy stress in unrotated configuration as

6 =R'oR (38)

where R is a proper orthogonal tensor. The conjugate strain rate to 6 is D defined in unrotated frame of
deformation by D = R'DR. Thus, the hypoelastic part of constitutive equation is

6=C:D° (39)
D = D¢+ DP (40)
where C° is the Hook stress—strain tensor defined by

1
ijkl = K0 + 2u (5,'/(5;1 3 5ij5k1> (41)

where K and u are the bulk and shear modulus of material, respectively.
In order to complete the hypoelasto-plastic constitutive equation in the context of finite deformation
plasticity, the endochronic constitutive equations are presented in unrotated frame as

~

Zd Dp
&dev = 2/ @d(zd - Z/) .ciev dZ, (42)
0 zZ
B DP e ﬁp
op = 2/ Oy (z, — 2) =2 de — 2/ VY(zy — 2)Ggey 1 —d7 (43)
0 Z 0 Z
. ¢
Zg=———" 44
‘ fd(’/I?pa 0) ( )
Zyn = ¢ 45
" fh(’l;l’) ( )
& = Dj, : D, + (D}’ (46)
where
6 = Gyey + nl (47)
G4ev = dev[o] (48)
op = —tr[&] (49)
ﬁp = f)gev + BSOII (50)

D? = dev[D”] (51)

dev
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Bpol = tr[ﬁp] (52)

Vi

and dev[-] = [-] — L tr[-]I, with I denoting the spatial metric tensor.

4. Numerical integration of constitutive equations

The major challenge in the integration of the rate constitutive equations in finite strain range is to
achieve incremental objectivity. The implementation of objective stress rates in constitutive equations re-
sults in objective formulation only in the limit of very small time step (Hughes and Winget, 1980). As the
standard time discretization procedures cannot be lead to incremental objectivity, one efficient way to
overcome this problem is to state constitutive equations in corotational frame. Assuming that the variables
of the model at step n and the incremental displacement field Au = "*'x — "x at load step n + 1 are known,
the updated value of different variables of the model will be calculated at load step n + 1. The left super-
script refers to the load step which is omitted for current step.

Applying the backward Euler scheme to Eq. (39) yields

6="6+C: DA (53)
A6 = C*: Ad° = C°: (Ad — AdP) (54)
in which the corotational increment of D is given based on the midpoint rule as
- ~ 1
Ad = AD == (AU”*%U’I + ”+%U*'AU) (55)

where AU ="*'U - "U and "2U = ! (""'U +"U).
One of the most important parts of numerical scheme is numerical integration of endochronic consti-
tutive equations. Substituting Eqgs. (15)—(17) in (42) and (43) give

[ (za—7) D},
~ _ —oy(zg— ev 1./
Ggey = 2 ;Zl /0 Apelea?) Zer gz (56)
~ 2 . B B e_ﬁv(zh—z') 13501 dZ —2 - w1 Ce—/j.(zh—z’) ~ f)gev dz (57)
Oh = E i€ - - g — e Gdev : — Z
h - o 2 - ) Kfin dev 2

In order to integrate Eqgs. (56) and (57) numerically, the loading is divided into n steps, thus

k(AP
Py (”Z ) =2 i é (Addev) e—%(”zd—kzd) _ e—dr("zd—k’lzd) (58)
dev d) = o, kAZd

k=1

6L(nzh) =2 Z & k(Ad\]?Ol) [e*ﬁ/(”zh*kzh) _ e*ﬁi('jzh*kilzh>:| -2 Z Lg

ke k(AP
Gdey : (Ad )
e dev [e—/fi("zh—*zm _e—/f,-wzh—k*'zh)} (60)
kAZh
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m
on("zn) = > 61("zn) (61)
i=1

It is worth mentioning that the striking feature of the above scheme is the direct integration of hereditary
function. Such a procedure, in general leads to more accurate results with much smaller number of
increments. Egs. (58) and (59) can be simplified as

. 4" (Aaﬁw)
6:1ev(nzd) = 6-:iev(nilzd)eio{r A + 2_f T AL (1

_ A" Azg 2
Y AL e ) (62)

n A&P
~i(n Al (n— —p" Az Bi vol —p" 2 Ci n—1x n 1 —p"
o1("z) = 63" 'zn)e ﬁ‘Ah"'zF(nTh)(l —eh &h)_MF( '6ey : (Adgev))(l —e i)

(63)

The incremental form of endochronic constitutive equations can be obtained from Egs. (62) and (63) by
taking step n + 1 as current step. The incremental equations which is necessary in the numerical modeling
of initial strain are as follows

m Aap m . )
AGaor = " () (7 = 1) + 2 ; ;Lr(l ey (64

r=1

m

. A" I~ B; 2("6yey : AdR) = C;
- n i —[)’,-Azh_l 2 vol -t 1— —BiAzn\ _ ev dev ~t 1— —BiAz, 65
o= "(a)( e Ok U By venn D Db UL G

i=1

A6 = C° : (Ad — AdP) (66)
N ~ ~ 2
AG = AdY,, : AdS, + 12 (AdD,) (67)
Ag
Azy _fd(n+ln’n+1p’n+l 0) (68)
Ag
Ay = — 2 69
SN (69)

A set of seven algebraic equations can be solved for the unknowns values of A&gev and AZZE by applying the
Newton—Raphson method. Once AdP is known, the corotational increment of stress tensor is derived from
Eq. (66). The value of stresses will be then calculated from relations 6 = "6 + Aé and ¢ = R6R".

It can be seen from Eq. (55) that the proposed scheme is trivially incrementally objective. In the case of
rigid body motion, "*'U = "U and from Eq. (55) D = 0, thus the stress tensor will be exactly updated by
relation "*'¢ = AR"6AR". It should be noted that in this scheme the rotation tensor R is exactly computed
from the polar decomposition and not from the numerical integration of rate equation @ = Qw, with Q
denoting a spin tensor and w indicating an orthogonal rotation tensor.
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5. Model assessment and numerical results

In order to illustrate the efficiency and accuracy of the material model and numerical schemes, the
powder compaction simulation of a multi-level, shaped tablet and cylindrical MH-100 iron powder com-
ponents are analysed numerically. The material parameters in the constitutive model are calibrated for two
samples of metal powder by fitting the model to reproduce data from true-triaxial compression experi-
ments. The endochronic constitutive equations and the proposed numerical integration, described in Sec-
tions 2-4, along with the consistent linearization schemes, presented in Appendix A, have been
implemented in a non-linear finite element code to evaluate the capability of the model in simulating
powder compaction process.

5.1. A multi-level component

The first example is the simulation of a multi-level compaction process chosen to demonstrate the
performance of the present formulation for the complicated die geometry of a multi-level component. The
experimental data are obtained from a set of compaction experiments on an iron-based powder (95% by
weight) performed by Doremus et al. (1995). Both isostatic compaction and triaxial tests were driven. The
raw material is composed of iron, copper, wax and zinc stearate, these two last components being admixed
as internal lubricants. The density of the solid phase was about 7.54 g/lcm? and the tap density powder was
about 3.67 g/lcm?.

Box 1. Endochronic material parameters. The mixed iron powder

Young modulus: E() = Eo (%)3 Eo = 18,000 MPa, 7, = 0.25
Poisson ratio =0.35

Initial apparent density =3.67 g/cm?

Solid density =7.54 g/cm?

Hereditary function parameters:

A; = 300,000 MPa

o = 1000
B, = 116,700 MPa
B, = 300

Deviatoric scale function parameters: a; = 1.5, a; = 0
Hydrostatic scale function parameters: m = 7.8, ,, = 0.4

The particles had an irregular shape and their size was between 10 and 100 pm. The compacted specimen has
an initial height of Hy = 42 cm and diameter of Dy = 20 cm. Triaxial tests consisted of an initial isostatic
compaction step up to pressure value of 400 MPa followed by a subsequent uniaxial compaction step carried
out by keeping pressure constant and increasing the axial stress up to a maximum value of 1250 MPa.

The powder material is modeled by endochronic plasticity with one term for deviatoric and hydro-
static hereditary functions and isotropic elastic properties. The scale functions f4(17) and f,(n) are deter-
mined from the material properties in terms of relative density. These functions have the highly non-linear
forms to cause the hardening behavior of the deviatoric and volumetric plastic response. The following
forms, which are appropriate for metal powder, are proposed for the deviatoric and hydrostatic scale
functions
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fa) =n+an’ + an’ (70)
Su(n) =f1’”'11%zm (71)

The parameters of hydrostatic scale function (m and #,,) can be calculated by fitting the response of model
to the volumetric strain versus hydrostatic pressure curve obtained from the isostatic compression test.
Having determined the parameters of f;(#), the response of the model will be fitted to the results of triaxial
test, in order to obtain the parameters of f3(1). The material properties for simulation of powder are given
in Box 1.

Fig. 7(a) presents the evolution of the density versus hydrostatic pressure. This evolution is the
characteristic of metal powders. The experimental and numerical results are compared for the isostatic

bl
n

5.0 [s] Experiment (Doremus et al.,1995)
Endochronic model

Density (g/cm?)

o 100 200 300 400 500
(a) Hydrostatic pressure (MPa)

————— &------ Experiment (Doremus et al.,1995)

. E=250 MP,
Endochronic model o e

7.5

Density (g/cm?3)
o ~
w (=3

=
E)

5.5

1
5'00 0.1 0.2 0.3 0.4

(b) Axial strain

Fig. 7. (a) Density versus hydrostatic pressure during isostatic compaction, (b) density versus axial strain in triaxial tests at given
confining pressure.
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compression step. The applicability of the proposed endochronic theory to handle the volumetric terms is
evident in this figure. Fig. 7(b) corresponds to the complete triaxial compression tests. The density versus
axial strain curves are plotted for different values of the hydrostatic pressure attained at the end of isostatic
compression step. Remarkable agreements between experimental and numerical results are obtained.

The numerical results are obtained for a multi-level compaction process by Oliver et al. (1996). The
simulation is performed with the powder material parameters presented in Box 1. The initial density at the
start of simulation is 2.94 g/cm?®. The compact specimen is a bearing used in the automotive industry whose
axisymmetric geometry is shown in Fig. 8. The initial and final shapes are plotted in this figure with dashed
and full lines. The compaction is performed by means of the action of five punches, labeled a, b, ¢, d and e
in Fig. 8(a). The component is modeled by 2D axisymmetric structured mesh of 813 bilinear elements.
Friction effects are considered through a Coulomb’s friction model with a friction coefficient of u = 0.1
(Oliver et al., 1996). A numerical model of the frictional contact based on penalty approach is used to
simulate sliding resistance at the tool-workpiece interface. The deformed mesh at the final stage of com-
paction is plotted in Fig. 8(b). In Fig. 8(c), the relative density contour at the final stage of compaction
process is presented. The fairly uniform distribution of relative density is also found by Oliver et al. (1996).
A lower relative density distribution is detected at the top part of the sample. The range of the variation of
relative density in the sample is similar to those presented by Oliver et al. (1996).

5.2. A shaped tablet component

The second example demonstrates the performance of the present formulation in complicated die
geometry and simultaneous high distortional and volumetric deformation of elements in a shaped tablet
component. The powder material is modeled using endochronic plasticity with the deviatoric and hydro-
static scale functions defined by Egs. (70) and (71). The material properties for simulation of powder are
given in Box 1. The endochronic material parameters are used to simulate the compaction process of a
shaped tablet component, whose axisymmetric geometry is shown in Fig. 9(a). The geometry is used by

15mm
h J

a=%.56 mm
b=12.3 mm

—12 .
=214 mm Relative
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Fig. 8. A multi-level component: (a) geometry and loading description (after Oliver et al., 1996), (b) final deformed mesh, (c) the density
distribution at final stage of compaction.
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Fig. 9. A shaped tablet component: (a) geometry and loading description (after Lewis and Khoei, 2001), (b) final deformed mesh, (c)
the density distribution at final stage of compaction.

Lewis and Khoei (2001) to show the applicability of their formulation in tablet pressing process. The
Coulomb friction coefficient is assumed u = 0.08. The compaction simulation is performed by means of the
upper and lower punches. Some problems are caused by discontinuities in geometry, for example the flow
around corners and the multi-punch setup.

The deformed mesh at the final stage of compaction is plotted in Fig. 9(b). The relative density contour
at the final stage of compaction is presented in Fig. 9(c). From the contour of final stage of compaction, it
can be observed that the density in the right hand region of tablet is greater than other parts while regions
with low density appear between high-density regions. The distribution of density in final stage of com-
paction is a bit different from results reported by Lewis and Khoei (2001). These discrepancies can be
related to different treatments of friction between powder and punches. While in the present simulation
contact between powder and punches is modeled with Coulomb friction of p = 0.08, in this reference the
relative movement between powder and punches is restrained.

5.3. Compaction process of MH-100 iron powder component

The last example describes the applicability of endochronic model in determining the material param-
eters for dry MH-100 iron powder and predictive capability of the model in simulating the powder com-
paction process. The material parameters are calibrated by fitting the endochronic model to reproduce the
data from the simple compression experiments. Since such experiments on powder materials typically result
in non-homogeneous deformations, the fitting procedure requires numerical simulation of the experiments.
Gu et al. (2001) produced the material parameters of the MH-100 iron powder for their cone-cap plasticity
using the true-triaxial compression experiments, torsion ring-shear experiments, and simple compression
experiments.

In order to determine the endochronic material properties in terms of relative density, the following
specific forms are proposed for the dependence of deviatoric scale function f4(n, p) and hydrostatic scale
function f;(n,p) on  and p

faln,p) = c(n) - f (72)

Sm(np) =1 —y)gln) — tﬁd% (73)
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where ¢(n) and g(n) are the increasing functions of relative density, defined as

m =N
C(”>:Acrl e

1 —

2 74
g(n) = Agn™
() g 1_7]0

where 4., A,, m. and m, are material parameters with positive values.

5.3.1. Material parameters of MH-100 iron powder

In order to determine the endochronic material parameters for the consolidation mechanism, the data is
obtained from experiments conducted with a high-pressure true-triaxial apparatus developed by Gu et al.
(2001). Fig. 10(a) shows a schematic top view of the apparatus. During an experiment, powder is poured
into the cubical cavity created by the blocks. Blocks 1 and 2 are angled sliding blocks sitting on the cor-
responding angled guiding-blocks. When the top block (not shown) moves downward in the 3-direction,
sliding blocks 1 and 2 move inward in the 1-direction and 2-direction, respectively, and the powder in the
initially cubical cavity is compressed in three orthogonal directions (Gu et al., 2001). The amount of
compression in each of the lateral directions can be controlled by changing the angles of the sliding and
guiding angled blocks. A plot of proportional strain paths attainable in the apparatus with the available
angles blocks is shown in Fig. 10(b). The notation x°/)° denotes the angles of the blocks in the 1- and 2-
directions, respectively.

In order to perform the numerical simulations of the true-triaxial tests on MH-100 iron powder, a single
three dimensional element is numerically modeled using endochronic plasticity. The simulations are carried
out by subjecting an eight-noded brick element to different principal stretchings Dy, Dy, D33 acting on sides
normal to the 1-, 2- and 3-directions. The relative values of the applied stretchings corresponding to the
different combinations of angled blocks are given in Table 1. The Young’s modulus and Poisson’s ratio of

i Frana Angled Sliding Block 2

Confining Bloc|

Pressure Sensor

s f\g_ | Is l
Ak

Powder Guiding Block 2

(a) Guiding Block 1 Angled Sliding Block 1 (®)

Fig. 10. (a) A schematic of the true-triaxial compression apparatus (Gu et al., 2001), (b) strain paths achievable in the true-triaxial
compression experiments.

Table 1
The values of applied stretchings corresponding to different combinations of angled blocks
D]] D22 D33

45°/45° -1.0 -1.0 -1.0
30°/30° -1.732 -1.732 -1.0
70°/70° -0.364 -0.364 -1.0
70°/30° -0.364 -1.732 -1.0
70°/45° -0.364 -1.0 -1.0

30°/45° -1.732 -1.0 -1.0
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MH-100 iron powder compacts have been experimentally determined by Brown and Weber (1988), which
are used in the following simulations. The endochronic material parameters are estimated by fitting the
response of model to the stress—strain curves obtained from the true-triaxial tests. Gu et al. (2001) measured
the normal strains {¢, &, ¢} and compressive normal stresses {7, 05,03} in each experiment for the dif-
ferent angled block arrangements. The hydrostatic scale function parameters corresponding to the cap part
of cone-cap plasticity are obtained as

—0.45
g(n) = nz‘s?_w, ¢, =500 MPa,  =0.5

Fig. 11 shows a comparison between the calculated and measured stress—strain curves for the different
deformation rate histories. For example, Fig. 11(a) shows the experimental results with the 45°/45° angled
block arrangement. The corresponding stress versus strain curves are almost identical in all three directions.
Thus, the 45°/45° angled block arrangement corresponds to an approximate hydrostatic compression test.
Fig. 11(d) shows the stress versus strain curves for the experiment with the 70°/30° angled block
arrangement. In this case, the stress—strain curves in three directions are all different from each other, and a
true-triaxial stress state is achieved. The numerical results for all the different triaxial loading paths are in
very good agreement with the experiments.

In order to evaluate the deviatoric scale function parameters corresponding to the cone part of cone-cap
plasticity, the data is obtained from experiments conducted with the distortion mechanism of a torsion ring-
shear apparatus, as well as by using data obtained from simple compression experiments on unsintered
compacts with different initial relative densities (Gu et al., 2001). A schematic of the apparatus is shown in
Fig. 12. In this apparatus, a thin hollow cylindrical specimen of the powder of inner and outer diameters of
63.50 and 69.85 mm, respectively, is confined between two floating concentric confining rings, and two
annular punches. One of the annular punches is fixed, and the other can be displaced in the axial direction
as well as twisted about its axis to subject the powder specimen to various combinations of axial com-
pression and twist. Gu et al. (2001) performed a set of experiments in which the ring specimens were first
axially compressed under different normal pressures to different initial relative densities, and the com-
pressed powder rings are then sheared while keeping the corresponding normal pressures constant. Based
on the torsional portion of these experiments, the nominal residual friction coefficient of MH-100 powder
was estimated 0.45 (Gu et al., 2001). Applying the procedure described in Section 2.4, choosing ¢4 = 90 and
using Egs. (34) and (35) results in the value of 245 MPa for py.

In order to evaluate the other deviatoric scale function parameters, i.e. ¢(y7), the variation of material
cohesion with relative density is obtained using simple compression experiments on samples with different
initial relative density (Gu et al., 2001). Cylindrical specimen is formed with a diameter of 25.4 mm and
height of 15 mm in a uniaxial strain compaction apparatus. Unconfined simple compression experiments
are then performed on these specimens. An estimation of the cohesion with relative density for MH-100
iron powder is shown in Fig. 13. The curve plotted in this figure is the fit of our proposed functional form
for ¢(n)

n—0.45
1-0.45

In order to illustrate the efficiency and accuracy of the endochronic material model in large strain range,
the uniaxial compaction experiment is analysed numerically. The finite element modeling of specimen is
performed using 2D axisymmetric structured mesh of 625 bilinear elements, as illustrated in Fig. 14. As a
displacement based formulation is used, the implementation of loading is achieved by the use of prescribed
nodal displacements. The direction of this displacement is in a vertical plane which represents the axial
punch load. Fixed nodal values are employed to represent the fixed bottom punch. Simulation is performed
with powder material parameters presented in this section using different initial relative densities of 0.696,

c(n) = L4n’
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Fig. 11. Comparison of the calculated stress—strain responses against measured and other simulated results in the true-triaxial com-
pression experiments with different angled block arrangements.

0.766, 0.813 and 0.850. The evolution of axial stress—strain curves are depicted in Fig. 15 for different initial
relative densities. The numerical results are in very good agreement with the experiments given in this
figure, and the only major difference appears in the non-linear behavior at the beginning of the measured
stress—strain curves. This non-linear behavior is attributed to the initial seating and setting errors during the
experiments, reported by Gu et al. (2001).
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Fig. 12. Schematic of the torsion ring-shear apparatus (Gu et al., 2001).
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Fig. 13. Variation of the cohesion with relative density for MH-100 iron powder.

5.3.2. Simulation of a compaction process

In order to demonstrate the performance of the present model in simulating the metal powder during
compaction process, the uniaxial compaction of a cylindrical MH-100 iron powder component is analysed
numerically. The experimental data and numerical results are available for this example and are used for
comparison. The powder material is modeled by the endochronic plasticity with the material parameters
obtained in previous section and summarized in Box 2. The finite element modeling of the cylindrical
component is performed using an axisymmetric representation and a structured mesh of 144 bilinear ele-
ments. The initial geometry, boundary conditions and FE mesh are depicted in Fig. 16(a). The die wall
friction is simulated with Coulomb friction coefficient u = 0.37 (Gu et al., 2001) and the initial relative
density of the powder is 1, = 0.42. The problem has been solved with displacement control by increasing
top punch displacement up to 30 mm while the bottom punch is fixed.
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Fig. 15. Simple compression of compacted specimens; axial stress versus axial strain curves for MH-100 iron powder: (a) experimental
results (Gu et al., 2001), (b) endochronic model.

The evolution of top punch vertical reaction force with its vertical displacement is depicted in Fig. 16(b).
Also plotted in this figure, is the experimental result given by Gu et al. (2001). The result shows a good
agreement between the experimental data and numerical simulation obtained by endochronic model. The
relative density distribution over the sample at the end of the simulation is depicted in Fig. 17. The relative
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Fig. 16. The uniaxial compaction of cylindrical MH-100 powder component: (a) an axisymmetric FE mesh (after Gu et al., 2001), (b)
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Fig. 17. Cylindrical MH-100 powder component: the calculated density distribution at the final stage of compaction.

density distribution is in complete agreement with those reported by Gu et al. (2001). This example
demonstrates that the endochronic model is capable to describe the behavior of MH-100 metal powder in
true-triaxial experiments, shear test and axial compression experiments. The results of a powder com-
paction simulation show how the proposed model can be
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Box 2. Endochronic material parameters, MH-100 iron powder

Elastic parameters: £ = 698 exp(5.625) MPa, v=0.3

Kernel parameters: 4; = 90,000 MPa, o; = 1000
B; =90,000 MPa, f, =500, p,=280, f;=5
Cl = 07C2 = 15,C3 = 1.5 MPa

Initial relative density: 1, = 0.45

Deviatoric scale function parameters:

c(n) = 1.4;73'7_—Z°, Py = 245 MPa

g(n)zn‘ﬁ, Y =05, ¢,=500MPa
— Mo

Coupling parameter: x = 1.5

used to predict the density distribution in the compact and punch forces accurately.

6. Conclusions

In the present paper, an advanced theory of plasticity was developed based on an endochronic model for
powder forming processes. The cone-cap yield surface was derived from endochronic constitutive equa-
tions, assuming a special form for the kernel functions. The flow rule and the dilatancy condition of the
proposed plasticity model were derived and a procedure for calibration of material parameters of the model
was proposed. A general algorithm for the endochronic theory along with the constitutive equations in
finite strain and their numerical integration were established. The elastic response was stated by a hypo-
elastic model and endochronic constitutive equations were developed in the unrotated frame of reference.
Constitutive equations were obtained based on coupling between deviatoric and hydrostatic behavior
through out the endochronic theory for rate-independent, plastically compressible, initially isotropic
materials. Finally, the tangent modulus consistent with the integration algorithm of elastic—plastic con-
stitutive equations was extracted.

The material model and numerical schemes were examined for efficacy in the modeling of a multi-level,
shaped tablet and cylindrical MH-100 iron powder components. It is demonstrated that the model is
capable to describe the behavior of different metal powders in true-triaxial experiments, shear test and axial
compression experiments. The results of powder compaction simulations show that the endochronic theory
in the context of finite deformation plasticity can be used to predict the density distribution in the compact
in an efficient and accurate manner.

Appendix A. Consistent tangent operator

In order to achieve the quadratic convergence rate of Newton method in solving the global system of
non-linear equations, it is essential to use the consistent tangent moduli with integration procedure of
constitutive equations in forming tangent stiffness matrix (Simo and Taylor, 1985). In this section, the
incremental constitutive equations, derived in Section 4, are linearized to yield consistent tangent modulus.
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Taking material time derivate of Eqgs. (64) and (65) yields

Aéde\’ = H(lievAéCl + ngvAégev (Al)
Ay = H'Azy + H'Ad, + HYAZ + Hl6ye, - A (A2)
where
Adh, & Adf,, - 4 -
Hdev -2 dev Ar - Azg 2 dev “r 1— —ouAzg\ _ rn ~r —o,Azg A3
=2 2 e A 2 g (e =) e (B (A3)
2 4
dev __ r —a Az,
H; *Edz“—r(lfe ‘) (A4)

r=1

A& AR ESB L, M N e 260 AP S,
HM =2 Azhl Z;Bl-e Bizn _2—Azﬁl Zf(l — g Fitan) —Zﬁi (ah)e Byl +7;Cie Filkan

i=1 ﬁl i—1 Ag

(A.5)

2 & B
Hh_i _t l_e_/jiAzh A6
2 AZh P ﬂ,( ) ( )

2640 1 Ad® <~ C; s
Hél — dAf_z Z F(l —e /szZh) (A7)
i i=1 i

2 G
HY = — (1 — e Pt A8
A Z]: [3,-( ) (A.8)

In order to linearize Azy and Az, the relative density , Lode’s angle 0 and intrinsic time ¢, should be
determined. For this purpose, taking the time derivative from Eq. (8) and applying the identity of
aJ/oU = JU !, we will arrive to

h=-nU":U (A.9)
Using Eq. (55), U can be stated in terms of Ad as
AU=Q': Ad (A.10)

where the fourth-order tensor Q is defined as

1 i i
Q= (5,-k"+%U;j‘ +0," U + 8,0, + ajk”%U,?,l) (A.11)

Applying relations (6), (41) and (54) and considering Jr = —Ggey : &dev and J; = J36,) ¢ &dev, it yields
0Ar =Y : (Ad — AdP) (A.12)

where

=23 3 /. 1. - L/ 0\ .
Vo= (2 (6 3oues) + (ss2), 5 (o), (a13)
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where A¢ can be obtained by taking time derivative from Eq. (67) as

A = 7Ad§lcv vol

AL+ Agp
+ 3 Ad AL
5

Taking material time derivative of Eq. (68) yields

. A Ac(0fs. Ofa. Ofay
Azg = 7 fd( + 11+699>

Applying similar procedure to Eq. (69) yields

. AG Ofn Ofn .
A = 7‘7( ”*a—n”)

6107

(A.14)

(A.15)

(A.16)

Substituting Egs. (A.1), (A.7), (A.12), (A.14), (A.15) and (A.16) in time derivative equation (47), by lengthy

but straightforward calculation yields
G=N:Ad"+P:Ad
where
N=N'+N+N
and
P=P +P +P
where tensors N%, N, N¢, P*, P’, P° and I* are defined as

Ac D 2 H!
Ne (Hh-i—KHh : fh+'<—( HY + )Adfm)I@I

Kfy Op  Ac Kfn
“ Ag afd
N”:HdldeV+HhI®cev+(K——+ Ad® |JHY @ 1
2 4 ds fd ap fd vol 1
Ag afd d d 1 h Hh
N=———H/®RY H; A —(H +— |1 Ad?
fdz 00 1® +Agfd ® dev+A + fh ® dev
a Ac Ofy 4
P eY
P Hh AC ath@(U Q71)+ C ded®(U :Qfl)
KfZ @ fd
P = fKHhA afhl@Ing%H?@@I
Kfi O /i 0

1
I?,iv/ (5ik5j1 + 0u0) — 3 00k

Taking material time derivative from Eq. (66) and substituting the result in Eq. (A.17), gives

3:€p:A&

(A.17)

(A.18)

(A.19)

(A.20)

(A21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)
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where
C'=C(C°+N)'(P+N) (A.28)

In order to complete the derivation of consistent modulus, the linearization of "*'R and Ad is necessary.
For consistent linearization of 'R, we start by relation

L =FF'=RR" + RUU'R" (A.29)
Pre-multiplying Eq. (A.29) by R and post-multiplying by F yields

R'LF =R'RU+U (A.30)
Subtracting (A.30) from its transpose, after some manipulation results in

R=G:L (A.31)
where

Gy = (RiU;, — R,U,) " (ReFin — R, Fy) (A.32)
Substituting Eq. (A.31) to (A.30) gives U in terms of L as

U=H:L (A.33)
where

H, = R.F; — R, UGt (A.34)
Applying relation (55) to evaluate A& appeared in Eq. (A.27), we obtain

d=G:"'U (A.35)
where

G = % <"+%U,;} S + "0, — %AU;,,I”+%U,;,£”+%U[/.‘ - %AUM ,"+%U;‘"+%U;;) (A.36)
Substituting Eq. (A.33) in (A.35) yields,

d=H:L (A.37)
where H is a fourth-order tensor given as

H=G:H (A.38)
Substituting Eq. (A.37) into Eq. (A.27) yields

6=C:L (A.39)
where

Cijr = Cppp Hot (A.40)
Applying Eqs. (A.31) and (A.39) along with 6 = RT6R + R"6R + RT6R, yields

6=C:L (A41)
where

Cijkl = Rim CmnklR/'n - Rim Gnmklcnj — Oin Gmnk/Rjn (A42)
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